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Preface

In 1979 a remarkable symposium "Glacier Beds: the Ice-Rock Interface” has been
organized by the Canadian National Research Council. A wealth of excellent papers has
been presented and discussed. Nevertheless, the final goal of formulating a general
glacier sliding law seemingly had moved further away than before. Several speakers
stressed this point; for instance Professor Hans Weertman, with his contribution "The
unsolved general glacier sliding problem" or Professor Louis Lliboutry with the
statement: "The best model is that which fits the largest number of observations and has
the least complexity”. Since this symposium, the interest in the sliding problem has
grown steadily. It was roused especially by spectacular natural events: glacier surges,
sudden slides of hanging glaciers, the disintegration and drastic retreat of tdewater
glaciers and the "fast flow" of certain polar ice streams. Progress in understanding glacier
sliding has been achieved on theoretical grounds and by applying highly developed
numerical methods and experimental techniques. While no really "general” sliding law is
yet in sight, several aspects of sliding are being better understood, for instance the
influence of bed separation on sliding over bedrock.

In the present study, "Glacier sliding over sinusoidal bed and the characteristics of
creeping flow over bedrock undulations” the ice flow close to bedrock undulations is
investigated in detail. The sinusoidal bed is the one with least complexity, and yet, it
comprises a good model for typical glacier-polished bedrock, where small roughness
elements are absent. Dr. Hilmar Gudmundsson derives the velocity field and stress field
analytically for a linear-viscous medium and small bed roughness. He then extends the
study to include large bed roughness and non-linear rheology by applying a suitable
numerical method. He establishes the conditions under which local extrusion flow takes
place. Beyond a certain limiting value of bed roughness a new phenomenon appears:
circulating flow in the troughs of the sinusoidal bed. In this case the ice can no longer
escape from the troughs.

Besides giving a full account of the flow field near the interface of sliding, this study may
thus help to understand certain unexpected disturbances such as local extrusion flow
which have been encountered near the bed in measurements of borehole tilt. Furthermore,
it will permit to assert the conditions under which ancient ice can be preserved in bedrock
troughs. At a different scale, it shows the typical distribution of strain rates in glaciers
which slide through overdeepenings. This last issue supplements the results of a
subsequent study by Dr. Gudmundsson (No 131 of this publication series) of ice flow at
a glacier confluence.

This research has been funded by the Swiss National Science Foundation.

Almut Iken
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Abstract

The characteristics of creeping flow close to bed undulations, and the form of the
sliding law, in the absence of friction, bed separation and regelation, are analyzed.
This is done by an analytical and numerical treatment of a non-linear medium
flowing over a sinusoidal bed. The main theoretical results of relevance obtained
to date, which are usually only valid in the case of a linear rheology, are given,
and emphasis is placed on what can be learned from them about flow behavior
close to the bed. An estimate of the pressure variation along the bed and of an
effective viscosity is used to obtain a sliding law for a non-linear medium valid
in the limit of small roughness and infinitely thick glaciers. Solutions based on a
second order perturbation analysis for the velocity field are presented and examined
for a sinusoidal bed. It is found that close to bedrock undulations, depending on
the amplitude-to-wavelength ratio, two different regions of extrusion flow may arise.
Above the crest of the sine wave a region of local maximum, and within and above
the trough a region of local minimum of the vertical velocity can develop, and exact
criteria for the appearance and disappearance of these stationary points are given.
Extrusion flow will cause a reversal of bore-hole inclination profiles close to the
bedrock. This has been observed in nature but its cause has not so far been fully
understood.

Numerical calculations are performed to extend the analytical results to the case of
non-linear rheology and a strongly undulating bed. The general form of the sliding
law for a sinusoidal bed for every possible roughness and n value (n is a parameter
in Glen's flow law) is found, and the effect of the ratio of glacier thickness to bedrock
wavelength is analysed. Extrusion flow is found to become increasingly important
as the flow gets progressively more non-linear. For high roughness values a flow
separation occurs, ¢.e. the main flow sets up a secondary flow circulation within the
trough, and the ice participating in this circular motion theoretically never leaves
it.
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Zusammenfassung

Die Flicleigenschaften eines kriechenden Mediums in der N#dhe von Bettuneben-
Leiten mit analytischen sowie mit numerischen Methoden untersucht. Dabei wird
angenommen, dafl zwischen dem Bett und dem Medium keine Reibung stattfindet.
Nur der Fall indem sich das Medium vom Bett nicht ablost, wird betrachtet. Regela-
tion wird ignoriert. Ein Uberblick iiber die bisherigen theoretischen Ergebnisse, die
sich in der Regel auf den linearen Fall beschrianken, wird gegeben. Eine Abschitzung
der Druckschwankung am Bett und der effektiven Viskositit wird benutzt um zu
einem Gleitgesetz zu kommen das fiir den nicht-linearen Fall und kleine Rauhig-
keiten giiltig ist. Neue Losungen fiir das Flie- und das Spannungsfeld, die auf
einer Stérungstheorie zweiter Ordnung basieren, werden prisentiert, und die wer-
den fiir den Fall eines sinusformigen Gletscherbettes untersucht. Es zeigt sich, daf§
je nach dem Verhiltnis der Amplitude der Bettunebenheiten zu deren Wellenlinge,
sich bis zu zwei Zonen bilden konnen, an denen die horizontale Geschwindigkeit mit
der Tiefe zunimmt. Oberhalb des héchsten Punktes des sinusformigen Bettes kann
ein lokales Geschwindigkeitsmaximum entstehen, und oberhalb des tiefsten Punktes
kann sich ein lokales Geschwindigkeitsminimum bilden. Genaue Kriterien fiir dieses
Fliefiverhalten werden gegeben. Diese Art vom Fliefiverhalten ist schon in der Natur
beobachtet worden, aber bisher waren keine theoretischen Erklirungen bekannt.

Anhand von numerischen Berechnungen werden die analytischen Resultate auf den
nicht-linearen Fall und groBe Rauhigkeiten erweitert. Die allgemeine Form des Gleit-
gesetzes fiir ein sinusférmiges Bett in Abhdngigkeit des Rauhigkeitsparameters und
dem Grad der Nichtlinearitit wird bestimmt. Ebenfalls wird der Einfluf8 einer end-
lichen Gletschermichtigkeit auf das Gleiten untersucht und quantifiziert. Fiir sehr
hohe Rauhigkeiten kann in einer Ubertiefung eine zirkulierende Strémung einset-
zen. Das Elis, das sich in einer solchen zirkulierenden Strémung befindet, wird die
Ubertiefung nie verlassen.
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CHAPTER 1
Introduction

1.1 Basal sliding and flow close to bedrock

Glacier flow consists of three elements: internal deformation of the ice, the rheology
of may be described mathematically by Glen’s flow law, basal sliding, and deforma-
tion of the underlying substrate. The sliding motion is often responsible for a large
part of the flow velocity of temperate glaciers, and is therefore a subject of vital
importance to the understanding of glacier behavior. The dependency of the slid-
ing velocity on physical conditions at the ice-bed interface is still an open question.
There have been many proposals for sliding laws, but so far there seems to be no
general consensus on what are the pertinent variables governing the sliding velocity,
let alone the form of the sliding law. Without a theoretically and experimentally
well-founded sliding law, realistic basal boundary conditions for a model of glacier
flow are not known and have to be introduced in an ad hoc manner.

For a numerical flow model, sliding is a sub-grid process (for the grid densities which
are currently practicable); sliding law is then expected to give the contribution of
all sub-grid processes to an average basal velocity u, (where the averaging distance
is of the same order as the distance between two grid points), as a function of some
quantity calculated by the numerical model, as an average over a characteristic grid
dimension such as the average basal shear stress 7,. In general the sliding law has
therefore the form:

7o = f(up) (1.1)

where f is some unknown functional representing the sliding law. The search for a
sliding law is a search for a matching condition for the local (sub-grid scale) flow
and the large-scale flow as has been stressed by Fowler (1986). Properties of the
local flow determine and give the boundary conditions, i.e. the sliding law, for the
large-scale flow.

For any particular glacier the physical conditions at the bed-rock interface as well
as factors known to influence the sliding velocity — the form of the bed, water
pressure, debris concentration efc. -—— are in general, not known. It will hence be
difficult to obtain information on the functional dependency of the sliding velocity
on for example the bed roughness spectrum through measurements. This illustrates
the usefulness, indeed the need for a theoretical work on sliding.

A short overview of previous work on the form of the sliding law and on flow char-
acteristics close to bedrock undulation, in the presence of sliding, is given in Sec-
tions 2.2 and 2.3 respectively.

15



The only process so far analysed in such detail that it can be considered to be
formally understood is the sliding of a Newtonian fluid over a perfectly smooth
wavy surface in the limit of small roughness, which can be solved with standard
perturbation methods. The sliding velocity for high roughness values, even for this
highly idealized model, is not known. It is not even known what roughness values
should be considered to be high, i.e. how accurate the perturbation solutions are
as a function of r, where r is the amplitude/wavelength ratio. No bounds on the
accuracy of linear, as well as non-linear sliding laws using Glen’s flow law, proposed
so far, are known and it is possible (and will be shown in Sec. 6.6.1 to be true) that
the range of r values where the sliding laws can be used accurately decreases as the
non-linearity of the viscous medium increases.

Sliding over hard beds, as opposed to sliding over sediments or soft beds, is an
important sliding mechanism in the Alps. Frictionless sliding over a sinusoidal bed
without bed separation is possibly the conceptually simplest model of sliding that
can be thought of. It is difficult to see how progress toward a “general” sliding
law for hard beds, including the effects of friction and bed separation, can be made
before a proper theoretical understanding of the more simple type of model has been
obtained. A numerical approach seems to be the only possibility of addressing this
problem in its full generality, since horizontal as well as vertical stress gradients
are expected to become important close to bedrock protubances and the full set of
equations has to be solved. Three dimensionless quantities characterise the problem
(cf. Sec. 3.1); two geometrical numbers describing the roughness of the bed and
the relative thickness of the glacier, and one number describing the degree of the
rheological non-linearity. A three-dimensional parameter space must therefore be
investigated, involving repeated solution of a non-linear equation system, so that
considerable computer resources are needed. This is most probably the reason why
this problem has not been tackled in its full generality by numerical means so far,
although valuable insights have been gained from numerical work done for several

isolated cases (Raymond, 1978; Meyssonnier, 1989; Schweizer, 1989). This numerical
work will be discussed in Sec. 2.2 and Sec. 2.4.

Most flow solutions, including solutions for large-scale datum flow (typical wave-
length of bedrock undulation large compared to ice thickness) as well as short-scale
solutions (typical wavelength of bedrock undulation comparable to ice thickness)
do not calculate sliding from first principles but regard it as resulting from the
local-scale flow (typical wavelength of bedrock undulation much smaller than ice

thickness) in some unknown manner, and circumvent the problem by using an ad
hoc sliding law usually of Weertman type

up = C1" (1.2)

where m and C are adjustable parameters. Although this law has mathematically
the same form as Glen’s flow law it does not have the same experimental status
(Lliboutry, 1968). The important point here is that the amount of basal sliding is
not an output but an input of most flow solutions. This makes perfect sense for
large-scale flow models but may be somewhat questionable for short-scale solutions.

16



Given the current state of affairs there seems, however, to be no other way of tackling
the effect of sliding on the flow.

Little is known about the local flow properties close to bedrock undulations in the
presence of sliding even for the linear case, and almost nothing for a non-linear
medium (cf. Sec. 2.3). Because of the inhereut complexity of the problem, only a
few analytical solutions exist. These solutions often apply to somewhat idealized
conditions at the rock bed but nevertheless give a valuable insight in to the nature
of the low. Again only flow properties for small roughness are known and numerical
work has been limited to a few cases.

Measurements of the deformation of bore hole give information on the rheological
properties of ice. Since shearing is usually concentrated at the lower most section,
directly above the bed, it is important for the interpretation of bore-hole deforma-
tion data to know how ice deforms around bedrock protrubances. Some surprising
observations, which require an explanation have been made. Extrusion flow close to
the bed has been demonstrated by bore-hole measurements (z.e. close to bed the ve-
locity increased with depth) (Hooke et al., 1987), which could possibly be caused by
the presence of bedrock undulations. Extrusive flow has also been observed within
subglacial sediments (Blake et al., 1992).

Flow through an overdeepening has been the object of increased interest with the
recent finding in the Alps of a corpse buried in ice, which was dated to be about
5000 years old. The fact that the corpse was found to be lying in an overdeepening
suggests a way of how it could have been situated there for such a long time. In
this context it is especially interesting to know to what extent ice flows over an
overdeepening without activating the ice within it. This will of course be dependent
on the depth-to-width ratio. A sinusoidal bed is a convenient idealization of this
type of geometry. To what extent the ice lying in the overdeepening participates in
the general flow and for how long it stays within it depends on the exact boundary
conditions, but a lower limit to the time it stays there and an upper limit on the
flow velocity is obtained by assuming no friction at all, ¢.e. perfect sliding.

1.2 Goals of the study

The goals of this study are twofold: (i) to investigate and determine the dependency
of the sliding velocity on bedrock roughness and rheological non-linearity, and (ii)
to analyse the characteristics of glacier flow close to bedrock undulations in the
presence of sliding.

To this end a study of an idealized glacier having a sinusoidal bed given by zy =
asin kxz, where zy is the vertical position of the bed, a the amplitude and k the
wavenumber, will be done. The single wave roughness is defined as the ratio of
the amplitude to the wavelength and will be denoted by r, ¢.e. r := a/A, where
A = 2r/k. Another convenient measure of the roughness is the local bed-slope
parameter ¢ defined as ¢ := ak. The ratio of the glacier thickness h to the bed
wavelength is expected to influence the sliding behavior. The thinness parameter ¢
is defined as & := (kh)™".
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Attempts should be made to find answers to questions such as:

o Is upy ox 1/e"*! for ¢ — 0, and if that is true, for what range of € values can
this relation be used? Does the range depend critically on n?

e What are the effects of § on u, other that those entering the sliding law through
7,7 Does é influence u, significantly or can it for practical purposes be ignored?

e How does u; depend on € for e £ 17
e Is extrusion flow close to bedrock undulations possible?

e How does ice flow through an overdeepening? At what € values does ice
effectively remain within the trough?

e Is flow separation possible?

Another goal of the study is to test the feasibility of the FE method for flow calcu-
lations involving sliding, and to develop programs that automate the calculation of
sliding velocities for a general bed geometry.

1.3 Organization

In Chapter 2 a specification of the problem that forms the subject of this work is

given. Previous work is discussed, with an emphasis on the linear first order theory
of Nye and Kamb.

Chapter 3 focuses on what is known about the form of the sliding law for a non-
linear medium, and what can be learned from simple dimensional arguments. An

estimate of the effective viscosity is used to show how strongly the sliding velocity
depends on the slope parameter €.

The second order solution of Morland for the flow along the sole-bed interface is
extended in Chapter 4 to the region above the bed-line. It is shown that the solution
so found displays a number of interesting properties.

For a non-linear flow law of the type mostly used in flow modeling, i.e. Glen's flow
law, analytical solutions have not been found. The only way at present of obtaining
a better understanding of this important problem seems to be through the use of
numerical models. In Chapter 5 a testing of the correctness of numerical results
obtained with the FE program MARC is described. This program was used for
numerical calculations of flow over a perfectly lubricated sinusoidal bed.

In Chapter 6 the numerical results are presented and discussed.

A summary of the results is given in Chapter 7.
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CHAPTER 2

Previous Work

In this chapter an exact description of the idealized problem of a glacier flowing
over a perfectly lubricated sinusoidal bed is given. This includes a mathematical
description of ice as a highly viscous isotropic and homogeneous material. Previous
work on sliding, with emphasis on sliding without bed separation and regelation, is
summarized.

2.1 Description and specification of the problem

2.1.1 Ice dynamics

Laboratory experiments and field observations suggest a constitutive law for ice of
the form (n1)/2

1

. . ’ . .
where ¢€;; are strain rates, 0y deviatoric stresses,

' 1
Uij =0y — gé,‘jd’kk (22)

! . . . .
o, the second invariant of the deviatoric stress tensor

1 1 ! ’
0y i= =0,.0 (2.3)

2%i%;
and d;; is the Kronecker delta. A and n are parameters determined by measure-
ments. Unfortunately the values of A and n are only approximately known. Often
n is assumed to have the value 3, although the experimental basis for this is not
strong. A, which is sometimes called the softness parameter, is a thermodynamic
property and varies strongly with temperature. Other factors such as ice fabric, ice
composition and chemical state and, for temperate ice, moisture content, are also
known to be important and to influence the value of A4, e.g. Lile (1978), Budd and
Jacka (1989), van der Veen and Whillans (1990). Sometimes the hardness parameter
B = A~Y" is used instead of A. This type of constitutive law is known in metallurgy
as Norton-Hoff’s power law, in general fluid dynamics literature as the Ostwald-de
Waerde or Reiner power law, but as Glen's flow law in the glaciological literature
(Hutter, 1991). Glen (1952, 1955) and Steinemann (1958a, 1958b) showed for the
first time the necessity of a non-linear flow law for ice. Generalisation of Glen’s
experimental results — that were done with a stress state of uniaxial compression
— by Nye (1953, 1957) resulted in the above shown flow law.
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All glacier flow must obey the fundamental laws of conservation for a physical sys-
tem, i.e. the conservation of mass, linear and angular momentum, and of energy.
Since the density of ice can be assumed to be constant, conservation of mass is
equivalent to conservation of volume.

Continuity equation (mass conservation):

'Ui,i =0. (24)

Equation of motion (conservation of linear momentum):

055+ Pigi = 0. (2.5)
The acceleration term is ignored since it is truly small compared to other terms.

Energy equation (conservation of energy):

DT
P Dt
where D/Dt is the substantial derivative!, ¢ the heat capacity, and K the thermal
conductivity. In Eq. (2.6) use has been made of one constitutive equation, i.e.
Fourier’s law of heat conduction. Since the ice will be assumed to be temperate, the
temperature will be determined by the Clausius-Clapeyron relation, and Eq. (2.6) is
inappropriate. The energy released by viscous dissipation will increase the moisture
content and not raise the temperature. The softness parameter A is expected to
be a function of moisture content (Lliboutry, 1976) but this will be ignored here.
Only spatial variations of A within the basal layer will affect the results presented.
It is not clear that the influence of spatial variation of moisture content on A will
dominate other factors on which A depends, such as salt, air-bubble and debris
content, which can either increase or decrease the value of A, and which will also be
neglected. A theoretical formulation of temperated ice masses that accounts for the
interaction of ice and water has been given by Hutter (1993) and numerical work
has been done by Hutter et al. (1988).

= KT‘,'Z‘ + O'ijéi]', (2.6)

2.1.2 Problem definition

Consider a glacier, thought of as a highly viscous material, sliding slowly and steadily
over a sinusoidal bed. Inertia forces are negligible. The sliding is perfect in the sense
that there is no tangential traction at the bed. The beds exert only normal forces.

No bed separation occurs and regelation is neglected.? The problem is depicted in
Fig. 2.1. The bed profile is given by

z = z:= asinkzr. (2.7)

'D/Dt := /3t +v;0/3x;. Other names for the substantial derivative are the particle derivative
and the material derivative.

2For real glaciers regelation is expected to be important at wavelengths smaller than the tran-
sition wavelength (Weertman, 1957, Weertman, 1964; Weertman, 1979).
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Fig. 2.1: Flow over a sinusoidal bed. The coordinate system makes the angle o with respect
to the horizontal. The vertical position of the bed line z, is given by: z, = asinkxz. The sine
wave has the wavelength A = 27 /k, and amplitude a. The surface velocity is denoted by u,
and the sliding velocity by wu,. I is the glacier thickness.

2.2 Previous work on the form of the sliding law

Weertman (1957) was the first to put forward a theory of glacier sliding. Later
lie refined and defended his model (Weertman, 1964; Weertman, 1971). He distin-
guished between two fundamentally different physical processes. The first is rege-
lation, whereby pressure variations around a bed obstacle cause a melting on the
up-stream side and refreezing at the down-streamn side. The second is local viscous
deformation of ice around bed obstacles.® For a given driving stress 7, Weertman
found the regelative and the viscous components of the ice velocity to be propor-
tional to 7, and 7' respectively, where 7 is the exponent in Glen’s flow law.

Lliboutry (1959, 1968, 1979, 1987b) argued that ice deformation, where the ice sepa-
rates from the bed, forming water filled cavitics, is an important sliding mechanisimn.
Bed separation reduces friction and causes larger sliding velocities.! Variations of
water pressure cause a change in the extent of bed separation and must be linked
to changes in sliding velocity (lken, 1981). Measurements have confirmed this (Iken
and Bindschadler, 1986). The magnitude of sliding with bed separation must de-
pend on the water pressure in one way or another. Theoretical work has been done
by Fowler (1986, 1987) that produced a complex sliding law for bed with power-
law roughness spectra r(A) o A, Further work has been done by Kamb (1987),

TWeertman used the term enhaneced plastic flow 1o describe this mechanism that 1 call local
viscous deformation. I do not use the word plastic because the flow is not plastic (for 2 > 1 Glen's
(low law represents a pscudo-plastic stress-strain relationship (White, 1991, p. 24-25)), and the
word enhanced does not seem necessary since it is not. clear with respect. to what, the flow is being
enhanced.

T use the term bed separation instead of the word cavitalion since cavitalion is used in Quid
mechanics to denote another physical mechanies, namely the spontancous creation of air hubbles
within a fluid as the (lnid pressure becomes locally lower than the vapor pressure (Hutter, 1983).
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Humphrey (1987) and Schweizer and Iken (1992). A recent overview has been given
by Kamb (1993).

Various attempts to estimate the relative importance of regelation and ice defor-
mation with and without bed separation have all shown that regelation is only
expected to be of importance at small distance scales (Weertman, 1957; Nye, 1969;
Fowler, 1986). For a given ratio of the amplitude of the bedrock undulations to the
distance between them, sliding due to regelation is inversely proportional to wave-
length, but sliding caused by ice deformation increases linearly with wavelength.
This is the motivation for Weertman’s notion of a controlling obstacle length, where
the contribution to sliding by regelation and ice deformation is the same. By sim-
ple dimensional analysis and assuming that the contribution of regelation and ice
deformation (without bed separation) can be added to the sliding velocity, one finds

Up A R C()K

T_b :605+01L—A', (28)
where ) is the wavelength of the undulation (or the distance between the obstacles),
n is the viscosity of the ice, which for a non-linear material could be substituted by
an effective viscosity, Cy is the Clausius-Clapeyron constant, K the mean thermal
conductivity of ice and bedrock, and L is the latent heat of fusion per unit volume
of ice. ¢g and ¢é; are some unknown constants, that in general will be some unknown
function of all the dimensionless numbers and ratios entering the problem, such as
the roughness r := a/), the ratio of the wavelength to the thickness of the glacier,
and a possible non-dimensional number entering the flow law.

Nye (1969, 1970) and Kamb (1970) considered the flow of a linear viscous medium
over a perfectly smooth sinusoidal bed without bed separation, and derived a first
order perturbation solution for the flow and for the stress field. This solution will
be discussed in Section 2.3.1. For a single sine wave Nye and Kamb found

% _ 1 200(K]+KB)]€
7 ne2k Le? ’
where k is the wave number (k = 27 /)), € := ak is the local bed-slope parameter (¢ =
2mr), and K; and Kp are the thermal conductivities of ice and bedrock respectively.
The first term on the right-hand side represents sliding due to pure viscous flow and

the second sliding caused by regelation. The equation can only be used for ¢ < 1.
The transition wavelength A, is given by

(2.9)

/\2 _ SFQT)CO(KI + I{B)
' L

and is of the order of 0.5m. Morland’s (1976a) second order linear perturbation
theory gave the same result. If roughness is absent at wavelengths smaller than
A, regelation can be ignored in the calculation of sliding velocities, and the sliding
velocity is proportional to 7. Conversely, if the bed roughness is concentrated
at short wavelengths (A < \,), then u, o 7. For a bed consisting of a single
sine wave with A = A,, Weertman (1957) showed that wu, o T,f"+1)/2. The heat
transfer associated with the regelation process was calculated by assuming it to be

(2.10)
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caused by pure conduction through rock and ice only, which can he justified to some
extent by the thinness of the water film estimated to be about 1 um (Nye, 1967;
Lliboutry, 1968; Fowler, 1981). A more accurate estimate of melting and refreezing
by regelation is difficult as the ice salt and air-bubble content, water inclusions,
moisture content and surface properties of the bedrock must be accounted for (Drake
and Shreve, 1973; Chadbourne et al., 1975; Morris, 1976, Shreve, 1984; Meyssonnier,
1989).

Kamb (1970) developed an approximate non-linear theory of sliding, which will he
discussed briefly in Sec. 3.3. He made the assumption that the effective viscosity is
a function of the distance above the bed only, and found that the transition length
is somewhat smaller for n > 1 than for n = 1, where n is a constant in Glen's fow
law.

Fowler (1981) made a rational dimensional analysis of the sliding of glaciers in
the absence of bed separation, including the non-linearity of the flow law. For
the transition length he found a value of the order of 0.01 m and concluded that
the regelative component of the ice velocity may therefore be neglected, provided
roughness is absent at lowest wavelengths.

By using a variational theorem for non-Newtonian flow found by Johnson (1960),
Fowler (1981) derived a sliding law valid for a non-linear medium, concluding that
the sliding velocity u, should be proportional to the ratio §/¢"*', where § = 1/kh
and h is the glacier thickness. A sliding law with the same functional dependence
on ¢ had earlier been derived by Lliboutry (1968) using simple physical arguments.

That u, is so highly dependent on ¢ for n = 3, the value of n mostly used for ice
flow modeling, is striking. This has, however, been questioned by Schweizer (1989)
who, through FE calculations, found u, to be less dependent on € than u, oc 1/e™+!
indicates.

Raymond (1978), in what seems to be the first numerical calculation of this prob-
lem, calculated the sliding velocity for a perfectly lubricated sinusoidal bed with no
regelation using Glen’s flow law. His calculations were limited to a few ¢ values and
they do not give the sliding velocity as a general function of ¢, 4, and n, but they
stand in an agreement with u, oc 1/e™+1.

Meyssonnier (1983) did a comprehensive numerical study of this problem, and com-
pared numerical calculated sliding velocities with analytical estimates. His impor-
tant work will be discussed in Section 3.2.

2.3 Previous work on flow characteristics close to
bedrock undulations
2.3.1 The linear first order theory of Nye and Kamb

Nye and Kamb, and later, in a somewhat more general way, Morland (1976), have
found an approximate solution to the problem of a highly viscous Newtonian fluid
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sliding over a smooth bed. The assumption of a Newtonian fluid was necessary in
order to be able to use standard perturbation methods. Morland has also considered
the effect of friction on the flow (Morland, 1976b).

The method of Nye and Kamb will now be briefly outlined, mainly in order to point
out the approximations that had to be made in order to obtain the solution.

A solution for the velocity v = (u,w) and the pressure p is sought in the form

u=up+ Zsiu,—(x, z), (2.11)
i=1
w= Zeiwi(m, z), (2.12)
i1
p= Zaip,-(:c, z), (2.13)
=1

where € = ak. One may think of £ as some small number, ¢ < 1. The bed profile is
given by '
z = zp :=asinkz =: ¢ f(x). (2.14)

At the upper boundary where z = 2z, with z; > A, a shear stress 7 is applied.
This is the driving force of the motion, not gravity, which is not present. The idea
here is that the force of gravity acting in the layer close to the bed will be negligible
compared to the force that the overlaying ice is exerting on it; a good approximation
for a thick glacier, that is if 6 = 0. This means that close to the upper boundary
the horizontal velocity varies linearly with z. On the lower boundary, z; = asinkz,
there are two conditions imposed: the velocity normal to the bed is zero,® and there
is no tangential traction. This means that

d
e , on 2z = zg, (2.15)
dr
and that )
Ogz = 5(011 —0,;)tan203(x) , on 2 = zp, (2.16)
where tan 8(z) := dz(z)/dz. These exact boundary conditions are now applied

not at the real boundary z = 2y, but at z = 0. By inserting zy = ¢f(z) and the

expressions (2.11) and (2.12) into Eq. (2.15), and by only taking terms up to order
€, one obtains, since 2zg is O(e):

— upf (z) + wy (z,0) = 0. (2.17)

The second boundary condition can be approximated in a similar way. Since both

7

0pe = (022 — 0.,)/2 and tan 23(z) are O(e), the boundary condition (2.16) becomes
o(x,0) = 0; (2.18)

writing o, as
0. = €01 + O(?). (2.19)

®In the presence of regelation this is not correct and there is a non-vanishing velocity component
normal to the bed. Regelation was taken into account by Nye and Kamb, but it is ignored here.
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Or if expressed in terms of v = (u, w

w; = u,,f'(:c) and = —ubf"(x), on z=0. (2.20)

)
Ou,
9z
The expressions for the velocity and the pressure are now substituted into

nViv=Vp and V-v=0 (2.21)
the conservation laws of linear momentum and mass.

After having collected the first order terms the solution is obtained by usual Fourier
integral methods. In the special case of a bed consisting of a single sine wave these
first order perturbation solutions are:

Ty

U= (2.22)

vo(Z, 2) = up + upak®ze % sin kz + O(e?), (2.23)
v,(z, 2) = wpk(1 + kz)e *2acos kz + O(e?), (2.24)
p(T, 2) = Poo + 2nupk’e *acos kz 4 O(e?), (2.25)
0..(z,2) = —0,, = 2nupk®ze **a cos kz + O(e?), (2.26)
02:(x, 2) = —2nupkdze *asin kx + O(e?), (2.27)
7(z, z) = 2nusak’ze ™ = 27';,26'” + O(e?), (2.28)

a
where 7 = \/0'”, which is sometimes called the effective stress, and po, is the
pressure applied at the upper boundary of the medium.

These expressions have some interesting features. One of them is the fact that the
second invariant of the deviatoric stress tensor, Eq. (2.28), shows no dependence on
z. This will of course also apply to the second strain-rate tensor invariant.

Another interesting feature of the linear solutions above is the occurrence of ezrtru-
ston flow; there is a region close to the bed where the horizontal velocity increases
with depth. At the point kz = 37/2 + 2nl where | € N and z = zp,, := 1/k, v, has
a local minimum:

Vmin = Vz(x = 37/(2k), 2 = 1/k) = up(1 — ak/e). (2.29)

From here downwards to the bed the horizontal velocity increases. This is a re-
markable fact, which deserves a closer inspection. Notice that since ak <« 1, it
follows that zpyin > a. Extrusion flow, a term introduced by Demorest (1941, 1942)
has been a subject of some debate in the glaciological literature. On theoretical
grounds it can easily be shown that a global extrusion flow, that is an increase of the
horizontal velocity with depth throughout an entire glacier, is impossible since the
overlying mass will then experience a force in the main direction of flow, which is not
counterbalanced by any other force, leading to an accelerating velocity (Nye, 1952).
There are, on the other hand, claims of extrusion flow having been directly observed
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by bore-hole deformation measurements (Hooke et al., 1987), and by observations
within sub-glacial caves close to the bed-rock interface (Carol, 1947). Arguments
supporting (global) extrusion flow based on mass-balance measurements have also
been given (Streiff-Becker, 1938; Seligman, 1947). These arguments must, however,
be considered to be rather weak, because no direct information on the velocity field
was available.

Because the solution of Nye and Kamb is only approximate, one might be tempted
to believe that this occurrence of extrusion flow may only be an artifact due to its
inexact nature, and that a more complete treatment where second order perturbation
terms are included will eliminate this feature. The inclusion of gravity as the driving
force of the motion, instead of a given shear stress at the upper boundary, will modify
the velocity profile so that it no longer varies linearly with depth at some distance
above the bed and that would also affect this situation.® A somewhat more realistic
theory is needed to clarify these matters. In Sec. 4.1 the second order solution
of Morland (1976a) will be used to calculate the velocity and the stress field as
functions of z and 2 (Morland only gave the solution along the bed, i.e. z = 0) and
the solutions will be analysed with respect to the possibility of extrusion flow.

2.4 Numerical work

Raymond (1978), Meyssonnier (1983), and Schweizer (1989) did FE calculations of
flow over a simple sinusoidal bed.

Raymond found the excess of velocity in comparison with a no slip situation to
depend on height above bed, which he ascribed to an effective softening of the basal
ice for n > 1. He also found the deformation to be concentrated more closely near
the bed for non-linear than linear behavior.

Meyssonnier obtained a point of maximum relative horizontal velocity that was
situated above the peak of the sine wave. This point did not appear in all his
calculations, for which the reason is not clear.

61t is interesting that neither Nye nor Kamb mentioned the feature of there solutions which
suggests the existence of extrusion flow for an infinitely wide glacier at small asperity and roughness
values. My guess is that they thought of it as an artifact of no relevance for glacier How.
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CHAPTER 3

Sliding Law for a Non-Linear Medium

No analytical solutions exist for the flow over a sinusoidal bed of a power law medium
with n # 1. Despite this fact some information on the form of the sliding law can
be obtained through the use of dimensional analysis and variational theorems.

3.1 Dimensional arguments

The relevant variables are: the glacier thickness (h), the wavelength of the sinusoidal
bed ()), the amplitude of the sine function (a), the mean slope (a), the driving stress
(ry = prghsina) — which is equal to the mean drag — and the viscosity 7. The
sliding velocity (us) can only depend on these variables. That is

up = up(a, A\, h, 7, 7). (3.1)

There are two dimensionless ratios that can be formed with these variables: the
roughness, v := a/\ and the asperity, ¢ := A/h, were h is the glacier thickness.! It is
sometimes more convenient to use, instead of r and ¢, the parameters: ¢ := ak, called
the local bed-slope parameter?, and 6 := 1/kh, which I call the thinness parameter.
For an infinitely thick “glacier” the thinness parameter is equal to zero.3

The sliding velocity will in general depend on both parameters. If, however, the
glacier thickness, h, is much larger than the wavelength A and the amplitude a,
it is physically reasonable to expect that the ice close to the ice-bed interface only
responds to the applied stress caused by the overlying mass of ice and that it does not

1Fowler (1979) introduced the word asperity for ¢ and used the word corrugation for . To call
the ratio of amplitude to wavelength roughness (sometimes multiplied by some numerical factor),
and use the symbol = for it, has been done by many authors, e.g. (Nye, 1970; Kamb, 1970;
Lliboutry, 1968; Schweizer, 1989; Schweizer and Iken, 1992).

2¢ is the so called small slope parameter which Nye and Kamb introduced (Nye, 1970; Kamb,
1970). Here I simply call it the slope parameter since in what follows it will not necessarily be
small, or the local bed-slope parameter to make it clear that it is the local slope of the bed which
is being referred to.

3Theories of large-scale datum flow, e.g. shallow ice approximation (cf. (Hutter, 1983)) often
use the symbol & for the ratio of the vertical to the horizontal dimensions of an ice cap, which is
then inversely proportional to the thinness parameter defined here and also denoted by . The
motivation for defining 4 in this way here, is that the symbol 8 is usually thought to stand for
some small dimensionless number, and in what follows é := 1/kh has to be small. The assumption
of § < 1 is not a self-imposed restriction; it is difficult to see how sliding velocity, which must be
some average property of the inner flow (i.e. the flow close to bed) can be defined if this does not
hold. The assumption 6 < 1 can be seen as part of the definition of the problem.
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sense the existence of a free surface, so that the thickness h will not appear explicitly
in the sliding law. In this limit of an infinitely thick glacier u, is a nontrivial function
of r only (nontrivial in the sense that this function cannot be determined by mere
dimensional arguments) or equivalently of the slope parameter € := ak = 27r.
Dimensional arguments now give

up = g(e)mA/n (3.2)
or

up = §(€) /7, (33)

where g and § are some unknown functions and 7, is the average basal shear stress.
Assuming that the rheological behavior of glacier ice can be approximated in suffi-
cient detail by Glen’s flow law

1 (n=1)/2
€ = Aa”( v Tijs (3.4)

1 . . . .
where g;; denotes the second deviatoric stress invariant:

1 1 ! ! ]. !
the sliding law becomes
up = Up(e, 6, n) A1y A. (3.6)

Notice that the 7' dependence of u, follows entirely from dimensional arguments
and that this is the only form possible if the effects of other physical processes such
as regelation, are neglected.

The unknown function U, can, and most probably will, depend on n and § since n
and & are dimensionless. One can think of U, as a nondimensional sliding velocity.

3.2 The sliding law in the limit as ¢ — 0 and for § =~ 0

It is possible to show how the sliding velocity, u,, depends on the (local bed) slope
parameter ¢, and the parameter n in Glen's flow law for § = 0 in the limit ¢ — 0,
if one assumes that the strain rates close to the bed are mainly determined by the
kinematics of the problem, and that changing n will have much more effect on the
stresses than on the strains. This will be done below. Somewhat similar arguments
have been given by Kamb (1970) and Lliboutry (1968). The argument given suggests
a certain form of the sliding law but does not prove that it must have this form.
The result has already been proved by Fowler (1986, 1987) and does not, of course,
have to be proved again. The arguments used by Fowler are, however, somewhat
complicated, and it is instructive to see how the form of the sliding law, can be
derived in a much simpler, albeit less rigorous, way.

The idea is to express the pressure variation along the bed as a function of the
amplitude, the wavelength, the sliding velocity and the viscosity. Since the rheology
is non-linear the effective viscosity will be considered. It is assumed that ¢ < 1.
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The pressure along the bed* is then given by
p(z) = po + prghcosa + 6p, (3.7)

where
8p(z) = coupnegke cos kx + O((ak)?). (3.8)

¢o 1s some unknown constant, p, is the atmospheric pressure and 7.4 is an effective
viscosity that will be defined below. In order to see the plausibility of this expression
notice that §p must vanish as e — 0. That dp(z) depends linearly on € can be thought
to be the result of a Taylor expansion with respect to € where only the first term is
retained. This will always give a correct result if ¢ is small enough.®> The product
nupk gives the right dimension for the pressure. It would also have been possible
to use the basal shear stress 7, to get the right dimensions, but then n would not
have been a part of the expression. Notice also that k cannot be substituted by 1/a
because if @ — 0, p must vanish (another way of seeing this is that if a — —a, ép
must change sign). It is obvious that the variation of §p with £ must be of the form
cos kz if ¢ is sufficiently small.

Now the effective viscosity 7.g will be estimated.

As a column of ice, which extends from the bed up to some distance [ where the
disturbance due to the bed undulations has disappeared, moves the distance Ar,
in the time At = Ax/u,, it is stretched/compressed to the length [ + Az, where
Az = Az dzy/dz. The (average) strain rate is given by

1 Az

<€, >= IR (3.9)

where the brackets are used to indicate that these are averaged strain rates over a
given distance, that is

. 1t
<€y >i= 7 / €i; dz. (310)
0
For the average vertical strain rate one gets

1 Azakcoskz
Az /uy 1/k

<€, > + O((ak)?) = upak? cos kx + O((ak)?), (3.11)

where use was made of the fact that [ must be proportional to 1/k since the only
parameters entering the problem that have the dimension length are a and 1/k, and
that using a would again be incorrect since the strain rates must change sign as
a ~ —a.% This expression could also have been obtained by calculating the average
of the vertical strain rates over the whole glacier using the vertical strain rates from

1Note that the pressure at the bed is not equal to the negative of the local normal stress o,
i.e. p # —o,. This can be seen by writing the pressure as p = —._%(a,1 + 0p), where g, is the local
stress parallel to the bed, and noticing that o, — 0, = 0’;1 — a;, #0.

50ne could also do the following analysis to second order in £. I have done this but it did not
give any new results. Note that the first order term is needed since Nye and Kamb's solution shows
that dp(z)/9ec # 0 for e = 0.

8Notice that it is the slope of the sine curve, which has to be small if this analysis is to be
correct. It is therefore ¢ which has to have a value of less than unity, and not a/A = ¢/27.
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the theory of Nye and Kamb discussed in Sub-sec. 2.3.1. Doing this for the shear
strain rates gives for <é;, >

<é,, >= upak’sin kz. (3.12)
The effective strain rate € is
é = Ee,-je',-j =€ +é, (3.13)
which now turns out to be
¢ = upak? \ﬂ:os2 kz + sin® kz = upak?. (3.14)
The Glen flow law can be written as
, é(l—n)/n ) ]
Uij = Wéij = 2"]eﬂ‘€ij, (315)
where
1-n)/n
Mefi "= oA (3.16)
Inserting (3.14) and (3.16) into (3.8) gives
6p(z) o |upak?®/A|Y" cos k. (3.17)

Force equilibrium requires

sin & 1 . :
plgh (COSQ) = C—(’Y—)[yands, (318)

where v is a path along the sine curve, C(7) is the path length, o is the stress tensor,
and 7 is a unit normal vector

P 1 —dz,/dz
1+ (d2,/dx)? ( 1 ) . (3.19)

A change of variables dz = ds(1+(dz,/dz)?)~'/2 gives for the drag (the z-component
of Eq. (3.18))

1 /)‘ ( dz,

T, = — — Ozz——

b 2o Ozz Ozz dz
1 A dz '

= = ° — ; 3.20

3 /0 (p7 + 0z: = 0, tan f) dr, (3.20)

where tan 8 = dz,/dz. The last term on the right-hand side is of second order in ¢,

and the exact boundary condition on z, (Eq. 2.16) shows that 0., is then of second
order also. Up to first order in ¢ the drag can therefore be calculated according to

)dz

7y 1= prghsina = 1/X (z, 20) Z2 d (3.21)
b= P19 =3 A LT, 20 I x, .
giving
ck 27 [k 9 |
To = ﬁ/o (upak?®/A) " ak cos® kz dz, (3.22)
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where ¢ is an unknown constant. After integrating and rearranging terms one gets

2AT" -
|(ak)"+k|

up X ™. (3.23)

Expression (3.23) is a remarkable result. It brings out the asymptotic 1/e"*! be-
havior of the sliding velocity as € — 0 and shows how strongly it depends on the
bedrock roughness. It also encourages the definition of a new function s, which I
call the sliding function

e"tlkuy(e,d,n)
241D

s(e,b,n) := (3.24)
One can think of the function s as the sliding velocity brought to a non-dimensional
form, where the asymptotic behavior for € — 0 has been accounted for. s is an even
function of €. For every particular n, § = 0, and € < 1, s is a constant. In general,
however, it is of course dependent on . From (2.22) it is seen that s(0,0,1) = 1.

Kamb (1970) found the same asymptotic behavior as in Eq. (3.23), but his derivation
involved various assumptions which made it difficult to judge the general correctness
of his findings. Kamb’s work will be discussed in Sec. 3.3.

It wasn’t until Fowler (1979), by using a variational theorem (Johnson, 1960), came
to this same conclusion, that Eq. (3.23) was given a sound mathematical basis.

Lliboutry (1987b, p. 356) gave an argument somewhat similar to the one given
above. His line of thought is however not easy to follow and one of his equations,
which gives the basal shear stress (Eq. (13.39)) as a function of o, is incorrect.

Schweizer (1989), in a numerical study, came to the conclusion that the sliding
velocity does not vary as e ("*!) but somewhat more slowly. His results are also
not in accordance with results based on a simple dimensional analysis (Eq. (3.6)).
They must therefore be, to some extent, inaccurate.

The function s(e, §, n) can be expressed as a Taylor series with respect to the variable
3
s(e,6,n) = Z cai(8,n) €%, (3.25)
=0
where c; are the Taylor coefficients.

Fowler (1981), Lliboutry (1987a) and Meyssonnier (1983) were able to estimate
(0, 3). Meyssonnier found

0.305 < ¢o(0,3) < 0.338. (3.26)
By using numerical methods to calculate the sliding velocity tor values of r in the
range 0.01 to 0.05 and 4 in the range 0.25/7 to 1/m, Meyssonnier was able to give

an estimate of c3(0, 3)
¢2(0,3) = 2.4. (3.27)

He gave no estimate of the errors involved and did not perform a systematic inves-
tigation of the § dependency of u,, but concluded that it is small.
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Lliboutry (1993) used a variational method to obtain an upper bound on s for n = 3,

His result is
5(0,3) < 0.33839 + 3.688¢” + 0.169£° (3.28)

Eq. (3.23) shows that s(e,d,n) as a function of n will be equal to ¢¢™", where ¢ is
some unknown number. Since s(0,0,1) =1, é = ¢, giving

s(,,n) = e (3.29)

Nye’s and Kamb’s solution for the pressure p(z,z) shows that ¢ = 2 for a linear
Newtonian medium. Assuming that the effect of a non-linear flow law on the pressure
variation along the bed can be described by a corresponding change in the effective
viscosity, ¢ in (3.8) will remain the same for different values of n. The estimate of
the effective viscosity given above may, however, not accurately describe the effect
that a change of n has on 7,5. The proper integration length [ in (3.10) will for
example depend on 7 if the deformation is concentrated in a different way near the
bed for non-linear than for linear behavior. Important aspects of the non-linearity
of the flow law such as these cannot be described simply by introducing an effective
viscosity.

3.3 Kamb’s non-linear sliding law

The effective stress is, as was discussed on page 25, to first order in ¢ independent
of z. Kamb (1970) used this fact as a starting point for the development of a
theory of sliding incorporating rheological non-linearity; assuming that since é;; is
independent of z in the linear theory (where only first order perturbation terms are
considered) it will also be approximately so for non-linear flow, in which case the
effective viscosity distribution 7(z) for one particular wavelength is a function of 2
only. Kamb’s expression for the sliding velocity is (Kamb, 1970, p. 703)

(1 + 7r2e2r2)(n—1)/2

Up = Aqn+2en—lpntl

AATY (3.30)
or

271 4 (ee/2)?) (D2 2 A7
- 4en-1 entlfk’
This means that s(0,0,3) = ¢y(0,3) = 4/e? ~ 0.54, a value that does not fulfill the
inequality (3.26). Meyssonnier’s results and those of Kamb differ, but not much. In
light of the assumptions that Kamb had to make the agreement is in fact surprisingly
good. Kamb’s theory not only gives the correct dependency of the sliding velocity

on roughness, but the numerical values are also almost correct. Kamb’s non-linear
theory must therefore be considered to be a successful one.”

up (3.31)

"There is no doubt that Meyssonnier got the correct result. I have repeated Meyssonnier’s
calculations based on Johnson's variational theorem (Johnson, 1960), that are easy but involve
some tedious work, and have got exactly the same numbers.
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CHAPTER 4

Characteristics of Flow Close to
Bedrock Undulations

In this chapter the flow characteristics of a highly viscous medium flowing without
friction over a bed consisting of a single sinusoid will be investigated. This is done
with the help of analytical solutions that are only valid for a linear medium and
small roughnesses.

-

4.1 Morland’s solutions

Morland considered the same problem as Nye and Kamb: The creeping flow of
a Newtonian medium over a wavy bed. He incorporated gravity as the driving
force of the motion and calculated terms to second order in €. For the special case
of a sinusoidal bed he gave expressions for the pressure field and for the velocity
components at z = 0, but not for the velocity and the for stress field as functions
of r and z. Using Morlands results one can calculate without difficulty the velocity
and the stress field as functions of £ and z, although somewhat laborious work is
involved. Note that only flow in the absence of regelation will be discussed here.
The corresponding solutions with regelation are given in Appendix A.

For the velocity field one finds

h
vao(7,2) = wp+ 22(1— (1 - z/h)?)
, 2n
+ wupak?ze **sinkz
+ up(ak)?e™2**(1/4 — kz/2) cos 2kz + O(&®), (4.1)
v.(x,2) = wupak(l+ kz)e ** cos kx
+ %ub(ak)%ze‘”‘z sin 2kx + O(®). (4.2)
The sliding velocity is as before
Ty
Up = W (43)
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The strain rates are given by

€zx = upak zk%e % cos kx
+ up(ak)? k(kz — 1/2)e”**sin 2kz + O(€?), (4.4)

by, = %ubk(ak)z(l—z/h)

— uyak zk®e **sinkz
+ uy(ak)? k(kz — 1/2)e” 2% cos 2kz + O(e%). (4.5)

4.2 Dimensionless form of the flow solutions

For the following discussion it proves to be of advantage to rescale the various
dimensional quantities involved and so to recast the equations in a dimensionless
form. To this end dimensionless vertical and horizontal length scales, denoted by
capital letters, are defined by

X =kz and  Z:=kz, (4.6)

where the wavenumber £ is used as a scaling factor. The velocity field is scaled by
the sliding velocity

Vx(X,Z) = v (z,2)/up and W(X,Y) :=v,(z, z)/us. (4.7)

As dimensionless parameters the slope parameter ¢ and the thinness parameter &
will be used. Sometimes Vx will be denoted by U and Vi by V. Eqgs. (4.1) and (4.2)
then become

2

Vx(X,Z) = 1+%(1-(1—52)2)
+ eZe ZsinX
+ €2e72(1/4 - Z/2) cos2X + O(e?), (4.8)

and
Vz(X,Z) = e(1+ 2)e ?cos X
+ %EZZ€_2Z sin 2X + O(e?), (4.9)
where use has been made of Eq. (4.3).

4.3 Discussion of the second order velocity solution
with respect to the possibility of extrusion flow

Does Eq. (4.1) imply extrusion flow, i.e. does vz(z, z) have a local maximum or
minimum for z > z? A necessary criterion for a stationary point of v,(z,z) is

Vug(z,2) = 0. One may start with investigating the variation of Vyx (X, Z) with
respect to X.
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4.3.1 Variation of Vx (X, Z) with respect to X

By looking at

Vx B 2
X (X,Z2) = eZe “cos X
+ €%(1/2- 2)e % sin2X, (4.10)

one sees that OVx (X, Z)/0X = 0 has as a solution X = n/2 and X = 37/2 with no
restrictions on Z.! There is another interesting set of solutions given by

. Ze?

Smx——e(l—ZZ) (4.11)
Since X = 0 and X = 7 with Z = 0 are solutions (these two solution branches will
now be called (Xy,Zp) and(Xx,Z.)) to Eq. (4.11), there are four points where the
horizontal velocity obtains a minimum or a maximum value at Z = 0 with respect
to X (and not only two as one might have expected). Inspection of the second
derivative of Vx(X, Z) with respect to X shows that X = /2 and X = 3n/2 are
points of local minima, and that there are local maxima at X = 0 and X = = for
Z = 0. The horizontal velocity does therefore not attain its largest value at the
highest point of the crest of the sine profile, but at the point of maximum slope.
This is a second order effect, as can be seen by looking at Eq. (4.8), and is restricted
to regions in the immediate neighbourhood of the bed where the second order term
dominates the first order one. There is no first order contribution to the velocity
field at the bed. In Fig. 4.1 the value of X according to Eq. (4.11) is depicted as a
function of € and Z. The figure shows that the Z values never get large (Z cannot
get larger than 1/2), and that as Z increases, X approaches the value X = =/2
rather rapidly. At this point a further increase in Z will increase the right-hand side
of (4.11) to greater than unity.? Only the solution branch corresponding to X = 0
and Z = 0 is shown. Only in the immediate vicinity of the bed will the maximum
value of Vx (X, Z) be close to the point X = 0 and X = . As an example: for
e = 0.1, Z will have to be smaller than 0.03 if X is to be less than 0.1/m. This is due
to the fact that for Z = 0 the first order contribution to Vx (X, Z) vanishes and it is
therefore only the second order contribution to Vx (X, Z), which is responsible for
the maximum at Z = 0. As soon as Z becomes somewhat larger than zero the first
order contribution starts to dominate and moves the maximum of the horizontal
velocity with respect to X to the point X = m/2. There will then be two (and no
longer four) stationary points: The point X = m/2, which — as an investigation of
the second derivative of Vx (X, Z) with respect to X shows — is a point of maximum,
and the point X = 37 /2, which is a point of minimum. Except for this second order
complication, these are the only X values where one can expect stationary points.

11t is to be understood that because of the periodicity of the sine function an integer multiple
of 27 can always be added to the values of X although it will not be explicitly so written.

2As Z increases further the right-hand side of Eq. (4.11) has a local minimum at Z = 1,
obtaining the value —e/e, and since the absolute value is larger than 1, there are no solutions for
Z>1/2
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Fig. 4.1: Stationary pointsat X =0and X =7

Lines of constant X /m values according to Eq. (4.11), as a function of ¢ and Z. X, Z and ¢
are related through X = arcsin{%}/ﬂ. Each line corresponds to one particular value of
X/m. The dashed line corresponds to X/m = 1/2. Only above this line is there a solution to
Eq. (4.11) for some values of Z and €. There are two solution branches to this equation. The
(Xo, Zo) branch, which includes (X, Z) = (0,0), is shown. The other branch can be obtained
by the mapping X — m — X. Notice how rapidly X approaches 7/2 as Z increases, and that,
for all reasonable values of ¢, Z, remains close to the bed.

4.3.2 Variation of Vx (X, Z) with respect to Z

Differentiating Vx (X, Z) with respect to Z and setting the resulting expression equal
to zero gives

1
€

1-0Z=-(Z - 1)e»‘z sin X + (1 — Z)e *% cos 2X. (4.12)

The interesting cases to considered are X = n/2 and X = 3x/2, but notice that
Z =0, X =0and X = 7 are also solutions to (4.12). These points, which are
situated at the bedrock interface, are saddle points. Here the horizontal velocity has
a maximum with respect to X but a minimum with respect to Z. This minimum
is situated at Z = 0, which forms the boundary of the medium. The existence of
these points is, as said before, a second order effect.

Let us begin with the case X = n/2 and see if there is a solution to the resulting
equation

(L=

1-4Z (Z-1)e %2+ (Z-1)e22. (4.13)
=:L(r/2,2,6) ~—

= R(1/2.Z.)

36



1.5 S S S S
I e=0.100 J
i
L 4
. ﬁ-
1.0} TN E—
4 I o '
p i
1oy i 3=0.100
051 R T <1 NG,
5 E= 0.211 3=0160
! $=02
O00Leuo, L: ......... [ [ [N
0 1 2 3 4 5
Y4

Fig. 4.2: L(n/2,Z,6) and R(w/2,Z,€) as functions of Z.

The solid lines represent the left-hand side of Eq. (4.13) for a few different values of §, and
the dotted lines show the right-hand side of that same equation for different ¢ values. For a
given 4 value, if ¢ is small enough there will be at least two solutions. If § > 0 a third solution
close to or above the surface (at the surface Z = 1/§) will exist. For every §, ¢ has to be
smaller than some critical value if there is to be at least one solution. There are no solutions
for Z < 1, and as ¢ increases the first solution (going along an ¢ curve from left to right)
moves away from the bed, and the second solution towards the bed. The first solution is, as
explained in the text, a point of relative maximum of Vx(X, Z) called UT5", and the second
solution is a saddle point called Uz33"".

This is a non-linear equation that does not have a solution in closed form. By
plotting the left-hand side (L(7/2, Z, §)) and the right-hand side (R(7/2, Z,€)) sep-
arately, as is done in Fig. 4.2, one sees that there will be a solution to (4.13) if the
right-hand side, for at least one value of Z, becomes greater than 1 — §Z. This will
happen if ¢ is less than some particular value, that will now be called € itica(7/2, 8).
There will only be stationary points at X = n/2 for some § if € < €criticai(7/2, 8).
To determine e gtical(m/2, 8), write € as a function of Z and §

Z -1
(1-062)eZ +(1—-2)e 2

Then €eqritical(7/2,8) can be found by maximising ¢ given by (4.14) subjected to
Z >0 and 0 < ¢ < 1. Differentiating ¢(Z, §) with respect to Z gives

0e(Z,8) (2-Z+(22-Z-1)8)e? +(-2*+2Z —1)e’?

0z ((6Z —1)eZ — (Z +1)e~2)?

By solving d¢/0Z = 0 numerically, €critical(7/2,6) can be calculated as a function

(4.14)

e(Z,6) =

(4.15)
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of 63 As an example let’s assume § = 0, which according to Eq. (4.15) gives
(Z —1)%% =2 — Z, or — as can be found by doing a few numerical iterations
with Z = 2 as a starting value — that Z = 1.9816906, which gives (c.f. Eq. (4.14))
€ =~ 0.1378839.4 Another interesting limiting case to consider is § = 0 and ¢ — 0.
Then, as can be seen by looking at Eq. (4.13), Z must obey (Z — 1)e=% = 0, which
gives Z = 1 or Z = +oo. For infinitely thick “glaciers” with & truly small (let’s say
€ < 0.05), there will therefore only be one stationary point for X = 7/2, situated at
Z =~ 1. As € gets larger this stationary point moves upward towards Z ~ 1.9816906
and another stationary point appears close to the surface which moves downwards
towards Z &~ 1.9816906 and disappears as ¢ becomes equal to 0.1378839.... At
this value of €, which will now be called e ritical(7/2, ) (Ecritical(7/2,0) = 0.1378839),
these stationary points coincide and disappear. Accordingly the point where these
two stationary points meet as € — €risical Will be called Zyiticai(7/2,8). We have
Zeritical(7/2,0) = 1.9816906. An inspection of the determinant of the Hessian matrix
of Vx(X, Z) at the point X = 7/2 shows that the stationary point below Zsicai(7, §)
is a point of relative maximum, so that it will now be called U7/5*. The stationary
point situated above Ziticai(7/2,9) is a saddle point; as a function of X, Vx(X, Z)
has a maximum there, but a minimum if the variation with respect to Z is considered.
This point will be called Uz

Ecritical(7/2, ) is depicted in Fig. 4.3. The figure was obtained by solving
9¢(Z,8)/0Z =0 (4.16)

numerically for different values of &, ecitical(7/2, ), subject to 8%¢/8%°Z < 0 and
Z > 1. The figure shows that the value of ¢, above which the horizontal velocity
has no stationary points at X = /2, gets larger as § increases.

The variation of ecritical(7/2,6) and of § as a function of Zsca(7/2,9) is given
in Fig. 44. As ¢ increases from 0 t0 €cyitical(7/2,4), ,'r';;" goes from Z =1 to
Z = Zeitical(1/2,8).  Zeriticat(7/2,8) increases somewhat with eiical(7/2,6). For
every € less than ecritical(7/2, 8) there will be at least two stationary points. (The
possibility of a third stationary point will be discussed later.) One of these two
stationary points is a saddle point and will be called Usde. Us33!* is situated
above Zitical(7/2,6). The other one is a point of relative maximum and will hence
be called Ur5*. UD5" is situated below Zeriica(m/2,8). As € increases UFJ3* moves
upwards toward Zica(7/2,6), Uzs3"® moves downwards toward Zeitical(7/2,9);
they meet there for a value of € = eitical(7/2,6) and disappear. In Fig. 4.5 the
position of U5 and Us¥4"® as a function of ¢ for two different § values is shown.
It can be seen how these two points move along Z toward each other as ¢ increases
— U starting from Z = 1/§ and Un starting from Z = 1 — meeting at

3There are two solutions to d¢/8Z = 0, one corresponding to 8%¢/3%Z > 0 and another which
gives 3%¢/9°Z < 0. If § < 1 then the minimum solution (which exists because of the (1 — §2)
term in Eq. (4.14)) will be situated close to 26 = 1. For ¢ lying between these maximum/minimum
values there are three solutions to (4.13).

By looking at Eq. (4.13), setting & = 0 and ignoring the second term on the right-hand side
with respect to the first one (anticipating that ¢ will be small}, one finds easily, by calculating the
maximum of the resulting equation with respect to Z, that £ must be larger or equal to e~ 2 = 0.135
if there is to be a solution; a good approximation of the more correct value of 0.1378839.
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Fig. 4.3: ecricica(7/2,8) as a function of 4.

For € and ¢ values below the line there will be at least two solutions to Eq. (4.13). One of
these two solutions corresponds to a local maximum of the horizontal velocities above the
peak of the sinusoidal bed and is called U77%*. The other solution is situated above U3
and corresponds to a saddle point of the horizontal velocities, where v, has a local maximum
with respect to X but a local minimum with respect to Z, and is called U;‘;‘;‘"e. If, for a
given § the roughness of the bed corresponds to a ¢ lying on the curve, there will only be one
solution to Eq. (4.13). This solution corresponds to the situation were the two points Usy
and U:‘;‘;dle coincide and disappear. For ¢ larger than e iica for some given &, which in the
figure corresponds to € and § values lying above the line, the horizontal velocity will have no
local maximum or a saddle point at z = /2. Note that €.itical(7/2, 8) increases as a function
of 4. There is a limiting value of e itical(7/2,0) =~ 0.1378839 as § — 0.

Z = Zuitical(1/2,0) and € = €critical(7/2,6). It can also be seen that ecriticar(7/2,6)
increases as § becomes larger (this can be seen better in Fig. 4.3).

At some point the curvature of R(n/2, Z,¢) will change sign and the solid lines of
Fig. 4.2 can cross the dotted ones not only twice but three times, giving rise to
the third stationary point. Calculating d>R(n/2, Z,€)/dz? and setting the resulting
expression equal to zero gives the position of the inflexion-point of R(7/2, Z,¢€)

zZ-3 ,
= — 4.17
c=1Z=9° " (4.17)
so that the inflexion point will be at Z slightly greater than 3. The third stationary

point, at which the streamwise velocity will be called U,? /"2, must therefore be above

Z = 3 so that 4 has to be less than 1/3. U,?f; will be closest to the bed if Eq. (4.13)
is fulfilled where the slope of the left-hand and right-hand sides are the same.” This

5Then, at the point where the dotted lines of Fig. 4.2 touch the solid ones, the slope of the two
lines will be the same.
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Fig. 4.4: £ciitica(7/2,6) and § as a function of Z iica(/2,8).

Zeriticat(T/2, 8) is the point where the stationary points U™2* and U;?‘;d'e meet and disappear

as € goes tO Ecritical(7/2,8). For € < €qritical(7/2,8) the stationary point U5 is situated
below Zcriticar(7/2,08) and the stationary point U333 above Zejiicai(7/2,6). Ecriticat and §

are connected, as is shown in Fig. 4.3.

0.00 005 015

Fig. 4.5: The position of Ury: and U;‘}‘;d'e as a function of € for § =0 and § = 0.1.
Zeriticat(7/2,0) and ecrivical(7/2,8) are the points where the the lines are vertical. The
branch above Zica(7/2,8) corresponds to U;j‘gd'e and the one below to Uri*. For
€ = Eentical(7/2,6) there are no UTg* and Uzi3d'® points. These solutions were found by

solving Eq. (4.13) numerically.
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must happen for Z > 3 if there is to be a third stationary point (U:J/"Q') at all

L(n/2,2,6) = R(r/2,Z,¢)  and aL(”Z’Z"s)zaR(”ﬁ’Z'E). (4.18)

Solving these two equations simultaneously for € and § yields

2o z-1
TP 2z-1-e2% (4.19)

and
e (2 -2Z+1)-2+2

5=
z? -7 -1 ’

(4.20)

subject to Z > 3.

In Fig. 4.6 ¢ and 1 — 6Z, where Z in this context stands for the Z coordinate of
U}rj/p?, are plotted as functions of 4, according to Eq. (4.19) and Eq. (4.20). If § goes
to zero, U,Irj/'; goes to 400, so that 1 — JU:J/'; — 0, e Uf/‘; — 1/4, which means
that U,‘rJ /'32 is at the surface. This behavior is expected because as § — 0 the glacier
becomes infinitely thick and the surface reacts only to the average form of the bed,
which means that close to the surface there is no horizontal velocity variation of the
vertical velocity component (0Vz/0X = 0), and because of the free surface condition
no shear stress and therefore no shear strain rate, which means that 0Vx /9Z is zero
also. The interesting thing about Fig. 4.6 is the fact that this point of no vertical
variation of the horizontal velocity, which is normally at the surface, can move, for
some value of 4 and £, somewhat below the surface.

As U,? /‘; approaches 3 the slope of 1 — 6U,?/'; becomes infinite; if that curve were to
be followed further it would have a negative slope. This continuation of the curve
does not correspond to U> & but to Uszgde; U’ J, does no longer exist. For rather
large values of 4, larger than about 0.2 (6 = 0.20198 corresponds to Z = 3 according
to Eq. (4.20)), and ¢ larger than 0.35, the vertical variation of Vx will therefore not
be zero at the surface Z = 1/§ (8Vz/0X # 0) and one must expect the surface to
start to deform because of bed undulations. This theory can hence not be used for
d > 0.2, since the existence of a free surface at Z = 1/§ was assumed.

The other possible X value for a stationary point of Vx(X, Z), in addition to X =
m/2,is X = 37/2. Inserting X = 37 /2 into Eq. (4.12) gives:

1-6Z=e2(1-2)(1/e — e %) (4.21)

The left side will always be positive, as will the term 1/ —e~%. For Z = 1 the right-
hand side is equal to zero, above Z = 1 it is negative and no solution is possible,
while below Z = 1 it is positive and there will always be a solution if 1 < 1/e — 1,
or if ¢ < 1/2, which means that €ig;ca(37/2,8) = 1/2. For € — 0 this solution will
be situated at Z = 1 and for € = 1/2 it will be situated at Z = 0 no matter what
the value of § is. Again, by looking at the determinant of the Hessian matrix, one
finds that this stationar® point is a point of relative minimum, and it will be called
Ug'%. Eq. (4.21) can be solved for e:

1-7
(1-02)e2 +(1—Z)e %
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Fig. 4.6: € and 1—-4Z, where Z denotes the normalized vertical position of U:J/';, as a function

of 4. Uf/'; is defined as the point of the horizontal velocity above U;?‘;d'e where its vertical
variation is zero. The coordinate system is scaled in such a way that 0Z = 1 corresponds to
U;J/pz being situated at the surface of the glacier. Since the vertical variation of the horizontal
velocity is always zero at the surface, which follows from the fact that at the surface the shear
stresses must be zero, one expects U,?/PZ to be found at the surface, and 1 — 6Z to be zero. If
1-8Z #0, U7 is no longer situated close to the surface, and one must expect the surface
to start to deform because of the bed undulations. Morland's solutions can then no longer be
used. Note that the vertical position of Uf/';, for a given 4, also depends on €. The curve for
1 — §Z corresponds to the "worst case”, in the sense that they were calculated for the value
of € that causes, for a given 4, Uf/"z to be situated as far below the glacier surface as possible.

This value of ¢ can also be seen and is represented by the £ curve.

As 4 varies the position of ;',’ri/"Q changes somewhat. This is depicted in Fig. 4.7,
which shows the position of UM®, as a function of ¢ for two different § values.® A
value of ecritical(37/2,0) = 1/2 is rather large, and it is not clear if this prediction
can be trusted since the perturbation approach is only valid for ¢ < 1.

The existence of the stationary points UFj5*, Us35¥® and Ugy'%, shows that there
will be two regions of extrusion flow. One is at X = 7/2, which extends over the
region that lies between the saddle point (U335%"¢) and the maximum point (U75%),
and another one at X = 37/2 that extends from bed towards the point of local
velocity minimum (U5,). The extrusion flow at X = x/2 will only be found for
£ < Ecritical(7/2,0), and the extrusion flow at X = 37/2 will only be found for
e<1/2.

To get an idea of how strong the velocity maximum at X = /2, is with respect to

SFor a given ¢ value and & # 0 there will be two solutions for Z of Eq. (4.22). Only one of them
will be situated below 1/4 (which is the maximum value of Z) and it is depicted in Fig. 4.7. The
other one will always be somewhat above 1/4 and is therefore of no relevance.
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Fig. 4.7: The position of U7, as a function of ¢ for § = 0 and § = 0.2. Us'%, is the
local minimum of the horizontal velocities above the trough of the sinusoidal curve (where
z=3r/2). Fore =0, U;’,‘r% is situated at Z = 1. As € increases it approaches the bed, and
disappears at ¢ = 1/2. Note that § has almost no effect on the position of U7,

the velocity at (X, Z) = (n/2,0), R™**(e, §) is defined as

aa — U(m/2,0)

R™(e.0) = /2.0

(4.23)

Ford=0ande—>0

e+1/e+e(l/e? +1)/4

T (4.24)

R™(e,0) =¢

or R™*(g,0) =~ ¢/e (6 =0, e — 0). This equation cannot be used for ¢ values close
t0 Ecritical(7/2, 0) because the variation of the position of iy with respect to € has
been ignored.

In a similar way R™"(e,§) is defined as

. min _ U(37/2,0)
min . — 3n/2
R™(e,0) = —5372,0)

(4.25)

R™in(g §) gives an idea of how strong the velocity decrease at X = 37/2 is, with
respect to the velocity at the bed.

Eq. (4.8) gives:

—1/e+e+(1/e?+1)/4

e (4.26)

R™n(c,6) = ¢

There is a minimum at:

e =(5e2+1— V25¢e* +6e2 +1)/e (4.27)
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Fig. 4.8: Vx as a function of X and Z for ¢ = 0.01 and § = 0. The maximum at X/m =1/2
and Z ~ 1is UZ*. The minimum at X/m=3/2and Z = 1is U7, For e — 0 the position
of U3 and Uy, e_lpproaches Z = 1. With increasing €, U5 moves upwards and disappears
for £ = ecriticat- Usn'Ty, on the other hand, moves downwards with increasing ¢ and disappears
fore =1/2.

or € = 0.144. For this value the extrusion flow is the largest. This value is, however,
only approximately correct since here again the variation of Uz, with respect to e
has been ignored, and its position at Z = 1 for ¢ = 0 was used.

It is illustrative to look at the velocity field given by (4.8) for some values of € and
6. In Fig. 4.8 Vx(X, Z) is shown for ¢ = 0.01 and § = 0. U3* at X = m/2 and

% at X = 37/2 can be seen but not, of course, Us35"® since it is at Z = +oo for
d = 0. Notice that the X is in units of .

The solution of Nye and of Kamb has, as said earlier, regions of extrusion flow. For
the stationary points this solution gives, for the vertical position of the maximum
and the minimum points, the value Z = 1. The solution of Nye and of Kamb
has no saddle point. These findings are reproduced by Morland’s solution in the
limit ¢ — 0 as is to be expected. For € values as large as €citical(7/2,0) there
are profound differences. Nye’s and Kamb’s solution makes no distinction between
the maximum and minimum points regarding their appearance/disappearance with
respect to different slope parameters values. Morland’s solution predicts instead
the disappearance of the maximum point, UT3*, and the saddle point, U335, at
€ > Ecritical(7/2,6). The minimum point, 5‘,‘3‘2, remains for £ values up to e = 1/2.
One sees that Morland’s solution contains regions of extrusion flow, but only for a
limited range of £ and 4 values.

It is important to notice that the influence of the wavy nature of the bed on the
How is not largest at the bed but at some distance above it. Typically this distance
will be about 1 (or z = 1/k). Often the deformation of a bore hole is used to get
information on the rheological behavior of the ice. One must carefully interpret the
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Fig. 4.9: Vx as a function of X and Z for e = 0.1 and § = 0.
Uy has moved upwards and U, 7, downwards with respect to Fig. 4.8. The point U333 can
also be seen. As ¢ increases further UM% and Uz33"' move towards Z = Zica(7/2,8) =
1.9816906, which they reach for ¢ = £ iica(m/2,0) = 0.1378839. Simultaneously U;‘,i/“z
moves downwards and reaches Z = 0 for € = e iical(37/2,6) = 1/2.

data from the lowest portion of a bore hole since the exact form of the bedrock, which
is usually not known, can have a large effect on the flow. Fig. 4.9, for example, shows
that the perturbed flow (the second and the third terms of Eq. (4.8)) dominates in
the region Z < 3, the gravity-driven plane flow (the first term of Eq. (4.8)).

In a numerical study Meyssonnier (1983) observed the appearance and the disap-
pearance of UT3* and Uz33% but did not mention Ug'%,. He did not include gravity
in his model. The driving force of the motion was a given horizontal velocity at some
distance above the bed. In this respect his calculations correspond to the problem
solved by Nye and Kamb. The maximum point disappears because of the super
position of a linear velocity profile on the Nye and Kamb solution.

4.4 A physical explanation for extrusion flow

Upon reflection it becomes evident that the vertical contraction and expansion of
the ice close to the bed is responsible for the extrusion flow. At some distance, let
us say at z = z;, sufficiently far above the bed the ice moves parallel to the mean
bed slope. For kr = 7/2, a high-pressure zone develops above the bed. which causes
a Poiseuille flow, superimposed on the gravity-driven plane flow (GDPF) solution.
The maximum of the Poiseuille velocity profile is at (z, — 2)/2, and if its decrease
above that point is faster than the increase of the GDPF velocity profile, a velocity
maximum will be found. Since the influence of the bed profile on velocity field is
(because of the factor e=**) limited to a zone of height proportional to 1/k, z; will
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Fig. 4.10: Vx as a function of X and Z for ¢ = 0.1 and 6§ = 0.1.
By comparing this figure with Fig. 4.9 the influence of § can be seen.

Fig. 4.11: Vx as a function of X and Z for ¢ = 0.5 and § = 0. The points U7 and U;“/‘éd'e
can no longer be seen, and point U:;T?z is at Z = 0, so there is no extrusion flow.

be proportional to 1/k and one will expect the position of this maximum to also
be proportional to 1/k. As a a matter of fact (2.23) has a maximum at z = 1/k
for kz = 7/2. At kz = 37 /2 the ice is expanded vertically and the Poiseuille flow
profile reverses, causing a velocity minimuin, again at z = 1/k as said before.

Nye’s and Kamb’s solution ignores GDPF and actually expresses nothing but this
contraction and expansion due to the wavy nature of the bed. The velocity minimum
and maximum therefore never disappears no matter how ¢ is varied. If on the other
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hand the GDPF is present it induces a subtle interplay between the Poiseuille flow
and the GDPF. GDPF must be involved if extrusion flow is to develop. Therefore
only certain ¢ values give rise to this interesting flow behavior, as was shown in

Sec. 4.3.

4.5 Higher harmonics

Another interesting feature of Eqgs. (4.1) and (4.2) is the doubling of the sine-wave
frequency. These second harmonics may be somewhat surprising since one might
expect the reaction of a linear medium to be of the same frequency as the applied
perturbation, a fact well known from linear system theory. The perturbation is,
however, in this case not a small term added to the fundamental differential equa-
tion, as in the usual perturbation theory, but rather the boundary condition that is
perturbed and that is a non-linear perturbation.

A simple argument shows that one is to expect other frequencies than sin kz to
appear in the solution, unless € is so small that the first order solutions (cf. Sec. 2.3.1)
are valid, and that they will become more pronounced as ¢ becomes larger.

Let us suppose that there were no higher harmonics in the expressions for « and w,
for all values of . That is

u=1up,+¢ésinkr and w=4¢écoskz, on 2=z, (4.28)

where é; and é; are some unknown constants. It follows that

Yo% Danks (4.29)
w ¢ coskr &
Using the exact boundary condition (2.15) and zy = asin kz one obtains

u 1

w  akcoskz (430)
at the base. Comparing Eq. (4.29) and Eq. (4.30) shows that ¢; must be equal to
upak and that & has to be zero if expression (4.28) is to be true. But this must be
true for all £ values because Eq. (4.30) is always valid. On physical grounds ¢o = 0
can, however, be rejected; for high ¢ values v, will certainly not be a constant on
z = 25, which means that the starting-point Eq. (4.28), must be incorrect. The

velocity will therefore not be a single harmonic.”

4.6 The stress field

Using results from Morland (1976a) the stress field can be calculated. My result is

0z. = T(1 — z/h) + 2nk*wpa {ka( oz — 1/2)e~2* cos 2kx — kze™** sin k:r} +0(?),
(4.31)

"For small corrugation values é& = 0 and é, = usak may become approximately correct. As
a matter of fact this is what Equations (2.23) and (2.24), that only show the dependence on the
fundamental harmonic, imply for z = 0. The expressions (4.1) and (4.2) that show the existence
of the second harmonic do not, of course, conform with these values of ¢o and ¢;.
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0. — O = —4dnupk?a { ze*¥? coskx + ka(kz — 1/2)e™?**sin 2k.1:} +0(e®), (4.32)

The expression for the second invariant of the deviatoric stress tensor is particularly
interesting:

2 = sz(l - z/h)2

- 47,,23(1 — z/h)e **sinkz
a
+ 4r2{(2)2%e7 + (1 — z/h)(kz — 1/2)e™* cos 2kz)
a
87,,2—2—6'3'”(192 —1/2)sinkz
a

+ dr2e % (kz — 1/2)% + O(€%). (4.33)

This equation should be compared with the corresponding Eq. (2.28) of Nye and
Kamb. In contrast to (2.28) it shows that 7 is dependent on z. It can readily be
shown that if z/h < 1, Eq. (4.33) has stationary points at (kz, kz) = (pi/2, 1), which
is a saddle point, and (kz, kz) = (37/2,1), which is a point of absolute maximum.
These stationary points do not disappear at certain corrugation values as did U7y,
Uz and Ug'%,. Notice that 7, for all values of z, increases from the bed upwards,
attaining its largest value at kz = 1. To get an idea of how large the variation of 7
with respect to z is, consider the ratio:

Tz =7/2,kz=1)
" r(kr =31/2,kz = 1)

which is the ratio of the maximum and minimum values of 7 as a function of z.
Putting (4.33) into (4.34), and ignoring z/h with respect to other terms, gives

(4.34)

| 1=2/e? —1/e* +4(1 — 1/e?)/(ee)
e J 4(1 - 1/e?)/(ee)1 + 2/e2 — 1 /et (4.35)
0.711¢ + 1.272
fex \/0.7486 —1.272° (4.36)

For € = 0 there is of course no variation of 7 with z, 7.e. R = 1. A corrugation
value of ¢ = 0.1 gives R = 1.12 or 12%, and € = 0.3 gives a variation of about
about 42% in 7 as a function of z, for kz = 1. This shows, without any doubt, that
Kamb’s main assumption in his development of a non-linear theory of sliding, €/,
being independent of z, is only approximately valid.

Kamb never claimed that ¢;; was entirely independent of x but merely that the flow
is dominated by the z dependence of . For small enough ¢ values this will be true.
The asymptotic € dependence of u, for ¢ — 0 is given correctly by Kamb’s theory,
although the numerical values are not exact, as has been shown on page 32.

All of the above equations for the velocity, the stress field, etc. are only valid as long

as no bed separation takes place, that is as long as the pressure at the bed remains
positive. The pressure field is given by

tan o

(2% cos kx + kae™2** sin 2k$)} +O0(e”)
(4.37)

P(JF,Z) = pa + prghcos o {1 — z/h +

)
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where a is the mean bed slope and p, the atmospheric pressure.

The position of the points of maximum and minimum pressure along the bed are
found by solving dp(z, z)/0z = 0 with z = 0, which gives
sinkzx

€= cos 2kz’ (4.38)

Using a Taylor expansion, one finds that the pressure obtains its minimum value at
kz = 7 — e + O(e?) and its maximum value at kz = £ + O(e®). This shows that as
¢ gets larger these points move from the inflexion points of the sine curve towards

kr=mn/2.
Requiring p > 0 gives

€ Pa 3
t < =914+ —- o 4,
ana < 2{ +p,gcosa}+ (€”), (4.39)

or to a good approximation: tan a < €/2, if the atmospheric pressure can be ignored
with respect to the mean ice overburden pressure. By inverting (4.39) one gets .

2
1 a a
e > 1+—P2 1+ P~} _ (4tana)
4tana Prgcos a prgcosa

PaPLIC*® 9 tana + O((4tana)?), (4.40)

which gives a lower limit for ¢, for a given mean bed slope and ice thickness.® There
are therefore two restrictions on €. First of all, it has to be small if the results of
the perturbation analysis are to be applicable, and secondly, it may not be so small
that a bed separation occurs. The predictions of this theory can only be trusted for
values of € up to € = 0.5, which means that a has to be less than 14°. Applications
to ice falls are therefore questionable.

4.7 Summary

At this point I would like to summarise the most important results obtained so far.

The sliding law has been given in a non-dimensional form and it has been argued
that only ¢, § and n will enter it in a nontrivial way. The fact that u, increases
linearly with )\ and a, for a given € independent of n and 4, as shown in Eq. (3.6),
follows directly from dimensional arguments.

For asymptotically small € and & values, the sliding law is given by (3.23). A
simple argument was given, which does not prove this result, but makes it physically
reasonable. There are other theoretical arguments that give the same result (Kamb,
1970; Fowler, 1979).

8The solution with a plus sign before the square root in (4.40) can be rejected by noticing that
it does not give the correct value in the limit of a — 0.
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Using the results of Morland (1976a), the expressions (4.1), (4.2), (4.32), (4.31) and
(4.33) that give the stress and velocity fields as functions of z and z have been
derived. It turns out that of two of the particularly interesting features of Nye's
and Kamb’s solution — occurrence of extrusion flow and the second invariant of the
strain rates being independent of z — the first is carried on to these more precise
solutions but the second is not. It must be stressed that this extrusion flow is of local
character, and should possibly be called local extrusion flow in order to distinguish
it from extrusion flow encountered earlier in the glaciological literature, which was
of global nature — extending, at some distance below the surface, through an entire
glacier — and causing an increase of ice flux. The local extrusion flow does not add
to the ice flux.

Criteria for extrusion flow have been given. Close to the bed the horizontal velocity
field can have at most three different stationary points. If 0 < ¢ < 1/2 there is a
minimum point (U 5‘,‘:/"2) situated at X = 37/2 and Z < 1, which moves downwards
as € gets larger, reaching the bed for ¢ = 1/2. For X = m/2 there is a point of
maximum velocity (Um5) at 1 < Z < Zerisical(7/2, ) 2nd a saddle point (U;?%d'e) at
Z > Zeivical(7/2,6) as long as € < €qitical(7/2, ). With € increasing the maximum
point, U3, moves upwards and the saddle point, U335, downwards until they
meet at Z = Zpitical(7/2, 6) for € = eqritical(7/2, 6) and vanish.

A simple argument was given, which shows that the velocity will in general not be
a simple harmonic at z = 2y, except for truly small values of ¢; a feature that may
at first be somewhat surprising but is evident in expressions (4.1) and (4.2). At
large corrugation values this frequency doubling may be expected to become more
pronounced.



CHAPTER 5

Testing of the Correctness of
Numerical Results Obtained with the
| FE Program MARC

The general purpose FE Program MARC (MARC, 1992) was used for all numerical
calculations of flow velocities and stresses presented in this work, including calcula-
tion of flow over a sinusoidal bed. In this chapter various tests done to estimate the
errors involved with the numerical calculations are described, and error estimates

given.

The results obtained by the FE code were tested by comparing them with analytical
solutions for some analytically solvable problems. For the numerical calculation
of flow over a sinusoidal bed an additional type of testing was done by comparing
results of runs with different values of A, a, h and a but same ¢ and 4 values together.
This latter type of testing gives an estimate of the relative errors that are caused by
differences in grid density. Comparison with analytical results, on the other hand,
gives an estimate of the absolute errors involved. It is important that both types
of testing are done, since the problems that can be solved analytically often possess
some kinds of symmetries that are not representative of real glaciers; comparing
numerical results with them does therefore not necessarily test the programs in a
general way. The discretization error was also estimated by solving the same problem
using several meshes with different numbers of elements.

5.1 Comparison with analytical solutions

When comparing calculated results with analytical ones, one should not use a prop-
erty of the analytical solutions as a boundary condition (BC) for the model. For
example, calculating the flow of a gravity-driven plane-flow using the analytical so-
lution for the velocity profile or the stress variation along the edge as a boundary
condition for the model will give estimates of the numerical errors which are too low.
A better approach would be to use periodic boundary conditions. Results obtained
with MARC were compared with analytical solutions for five different problems.

5.1.1 Gravity driven plane flow down an inclined plane

The effect of using velocity or pressure as a boundary condition. and the use of
periodic boundary conditions on the accuracy and computer time required, were in-
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vestigated. With 8 linear elements in the vertical direction the maximal discrepancy
between numerically and analytically calculated velocity for n = 3 was 0.04% if the
velocity was given as a BC, 0.06% if the pressure was given as BC, and 0.1% for
periodic boundary conditions. For non-linear rheological behavior the effective vis-
cosity distribution was repetitively calculated until the maximum change in velocity
was less than 0.01%. The iteration procedure converges much faster if the velocity is
given as a BC, thus confining the velocity variation, than if the pressure or periodic
boundary conditions are used.

5.1.2 Closure rate of a circular hole and the flow between two rotating
coaxial cylinders (Couette Flow)

The results concerning the numerical accuracy of the calculation of the closure rate
of a circular hole, are similar to those obtained by studying gravity-driven plane flow
down an inclined plane. It turned out that for a given mesh the numerical results
for flow between two rotating coaxial cylinders were more exact (about an order of
magnitude) than those for the closure rate of a circular hole with some pressure p;
within the hole and some pressure p; at the outer boundary. This shows that the
accuracy of the numerical results obtained with the same mesh can vary greatly for
two seemingly similar problems.

5.1.3 Gravity driven flow down a channel of circular cross-section

The velocity profile for a semi-circular channel of radius R of uniform cross-section
and uniform slope a is

o= m G -G e

where 7, = pjgRsina, and 7 = /52 + 22 (Nye, 1965; Hutter, 1983). The discharge
qis

q = /TdG/;R drv(r, 6)

n/
- (nﬂ+A 3) (%)n R (5:2)

If the velocity is scaled with 2AR7* and the discharge with 2477 R the dimensionless
velocity Uy and discharge Q are given by

1
Up= ——— and "

2 (n+ 1) Q= 2"+ (n + 3) (5:3)

These scalings are the same as those used by Nye (1965).!

!The A that Nye uses is twice the A used here, i.e. Anye 1965 = 24.
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Fig. 5.1-c: Normalized velocity profiles along Fig. 5.1-d: Percentage difference between
the 2-axis and the y-axis for n = 3. analytical and calculated v, values for n =
3. The long dashes represent the +0.20%
range.

Figs. a and c show the velocity variation of all the three spatial velocity components along a
profile that runs from a point at the bottom of the center of the channel (y = 0 and z = —R)
upwards along the z-axis towards the centerline (y = 0 and z = 0), and then sidewards across
the surface along the y-axis toward the margin (y = R and z = 0). Calculated values are
represented by symbols. v, is shown as a plus sign, v, as an asterisk, and v, as a diamond.
The solid line that goes through the plus signs in Figs. a and c is the analytical result for v..
The perceptual difference between analytically and numerically calculated v, values is given in
Figs. b and d. All the figures refer to the 10 x 10 discretization. Since the transversal velocity
component v, was fixed (= 0) along the longitudinal central plane of the channel, v, is not
shown in the left parts of Figs. a and c.

For the calculations two FE discretizations where used, one with 10 x 10 elements
in the cross-section?, and another finer discretization with 20 x 20 elements in the
cross-section. The meshes were generated by an automatic 2D mesh generator. An
example of the meshes created in this way can be seen in Fig. 5.2. The domain of
investigation was three-dimensional, but was reduced to two dimensions by imposing

210 elements subdivision in each spatial dimension, giving a total of 100 elements.
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Us Q
theoretical value 0.03125 0.032725
10 x 10 mesh ~ 0.03138 (0.42%) 0.03321 (1.5%)
20 x 20 mesh  0.03126 (0.03%) 0.032703 (0.06%)

Table 5.1: Semi-circular channel. Comparison of analytical and numerical values for U, and Q

for a semi-circular channel with n = 3. Values in the brackets stand for the percentage error
in Uy and Q.

periodic boundary conditions for the velocities. No assumptions about the stresses
or the velocities at the “cut off” boundaries were made. Only one half of the semi-
circular channel was modelled.

The difference between analytical and numerical values can be seen in Table 5.1.
‘The error is considerably smaller for the 20 x 20 discretization, but even for the
10 x 10 discretization quite acceptable. It can be concluded that a mesh with about
10 elements over the depth of a glacier gives sufficient precision for most practical
purposes. Since a discretization with more than 10 elements over the depth can be
computationally expensive the errors of the 10 x 10 discretization are analysed more
closely in Figs 5.1-a to 5.1-d.

Sometimes the flow transverse to the main flow direction is of interest. The FE
formulation used allows the elements to be exactly incompressible in principle, but
due to numerical errors this is not exactly so in practice. This causes some transverse
flow even for infinite channels where no transverse flow should occur. It is important
to estimate the magnitude of this “flow”, which is linearly proportional to the main
flow, and which expresses nothing but numerical errors. In Fig. 5.2 the horizontal
component of the transverse flow (v,), and in Fig. 5.3 the vertical component (v.),
are shown for a semi-circular channel with radius 100 m. The maximum horizontal
velocity v, was equal to one. This “numerical” transverse flow is surprisingly large,
up to 3.5 % of the maximum horizontal velocity for v, and up to 2 % for v,. In
general the errors are, however, much smaller, but this shows how careful one must
be in interpretating calculated transverse flow results.

In Table 5.2 computed results for a semi-circular channel for n = 1 to n = 5, where
n is the power law exponent in Glen’s flow law, and the corresponding errors are
listed. The errors of the velocity on the centerline do not seem to increase with n
and are of the order of 0.2 %. The mesh was 3D and the results given are for one
particular cross-section. Inspection of the results showed the centerline velocity to
oscillate slightly along the z-direction. Taking this small oscillation into account
the correct error estimate is 0.22 %. Errors smaller than this are accidental. The
discharge errors increase somewhat with increasing n. It is not clear whether this is
a result of the flow field errors or the errors involved with integrating the flow field
to get the discharge. Since only the resulting error is of interest this question is of

no concern.
In conclusion it can be said that the program MARC can be used for 3D non-linear
calculations of glacier flow where thermal effects are not important. For about 10
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Fig. 5.2: Normalized transverse horizontal flow (v,/v,(R = 0)) in a semi-circular channel.
The figure depicts nothing but numerical errors. If the calculation were exact, there would be
no transverse flow. The value of A was chosen such that v, along the centerline was equal to
one.

LI Uy | Q |
n | Numerical | Error (%) | Numerical | Error (%)
1]0.250439 | 0.17 0.19636 0.0067
2 1 0.083507 | 0.21 0.078538 | 0.0023
3 | 0.031261 0.037 0.032703 | 0.066
4 1 0.012491 0.066 0.014004 | 0.14
5 | 0.0051980 | 0.20 0.0061178 | 0.29

Table 5.2: Comparison of numerical and analytical values for the velocity at the centerline and
the discharge of a semi-circular channel. The numerical values were obtained with the 20 x 20

mesh.
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Fig. 5.3: Normalized vertical flow (v, /v, (R = 0)) in a semi-circular channel.

elements over the depth the error is generally less then 0.5% but somewhat larger
at the edges, or up to about 4%. There seems to be no reason to use more that 8
to 10 elements over the depth for most types of calculations.

5.1.4 Gravity driven flow down a channel of parabolic cross-section

Numerical solutions exist for glacier flow in channels of various cross-sections (Nye,
1965). Flows through a few parabolic channels having different aspect ratios were
calculated. The aspect ratio (W) is defined as the ratio of the channel half width
(bp) to its depth (a,), i.e. W :=b,/a,. The suffix p refers to parabolic.

A program was written that transforms a semi-circular channel into a parabolic one.
The idea behind the transformation formula used is explained in Fig. 5.4. The node
p of the semi-circular FE mesh with coordinates (z,v, ), is transformed into node
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Fig. 5.4: Transformation of a semi-circular channel into a parabolic one. The point r with the
coordinates (y, z) is transformed onto the point 7 with the coordinates (y',z'). S(y") is the
distance from the lower left corner of the parabolic channel (a,) along the lower boundary to
the point with the coordinates (y", 2"). (y",2") is defined as the point of intersection of a line
going through the channels center point (the origin of the coordinate system) and the point
r with the lower boundary of the channel. The idea behind the transformatlon is that /R
should be equal to r' /R, and that 8/(m/2) should be equal to S(y")/S(b,), where S(b,) is
the distance from a, along the bottom to b,.

p' having the coordinates (z,y', 2’) of the parabolic mesh by requiring that

6 s(y")
772~ 5(by) (54)
and )
T T
R RG) (53

where s(y"”) is a function giving the length of the parabolic curve from (y, z) = (0, R)
to (y,z) = (y", z"). = points in the down-flow direction (making a vertical angle a to
the horizontal), y is horizontal and perpendicular to the flow, and z points upwards.
Let 25 denote the z coordinate of the lower boundary of the parabolic channel:

20 = ap((y/b,)* — 1). (5.6)

The function s(y) is given by

_ [* dz,, -

s) = [['yf1+ (G
a y P N
- Vf P /0 Vo2 /20, + 2 dj

b2
= \/\/_—b {y,/bl/Qa,, + y? + — axcsmb o/ v/ 20, } (5.7)
Eq. (5.4) has no closed solution for . It was therefore solved numerically by finding

the zero of the function f(y) = 20/m — s(y)/s(b,). This procedure gave meshes that
were only slightly distorted. An example of a mesh generated in this way is given

in Fig. 5.5.
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Fig. 5.5: Parabolic mesh with aspect ratio 2.

Results of the FE calculations are given in Table 5.3. They are compared with earlier
results from Nye (1965) wherever possible. The form factor f is defined so that fzis
the best linear approximation to the shear stress o, giving the true surface velocity,
if fz is integrated. A simple calculation shows f to be given by f = ((n+1)U)/".3
Nye (1965) gave estimates of the error in Uy and the values in Table 5.3 agree within
the range of errors.

Calculating the flow of the parabolic channels involved exactly the same steps as
needed for the semi-circular channels, except for the additional use of the program
transforming a semi-circular channel into a parabolic one. For error estimates the
corresponding values in Table 5.2 can be used, as the errors are expected to depend
mainly on n and to lesser extent on W.

f and Q as functions of W are plotted in Figs. 5.6 and 5.7 respectively.

For W — 0 one finds that U = W™*!/(n + 1), and that f = W™+1/? and since
ndf/dW = (n + L)W'/ the slope of f(W) at W = 0, for any fixed value of n, is
zero. On the other hand, if n — oo and W — 0 then the form factor is proportional
to W, and the slope equal to one. This can be seen in Fig. 5.6 and explains the
somewhat different slope of the curve for n = 1 with respect to the other curves

3In general the form factor will depend on the variation of basal sliding across the width of
the channel. The form factors in Table 5.3 are valid for the special case of no, or uniform sliding.
Highly non-uniform sliding across a glacier cross-section has been observed by Raymond (1971)
at the Athabasca Glacier, where basal sliding velocities up to about 40m/a and at the same time
negligible marginal sliding was found. Reynaud (1973) showed that this kind of lateral sliding
variation can for example result from a friction at the bed being proportional to effective normal
pressure. Further numerical work, that resulted in better agreement with data from Athabasca
Glacier, has been done by Harbor (1992), who used a sliding law dependent on basal shear stress

and effective pressure, with the additional assumption of increased friction towards the margin of
the glacier.
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[n] W [Us [Q [f
1]0.25 | 0.025777 0.0039027 0.05155
0.5 | 0.083069 0.026672 0.16614
1 | 0.208831 0.13779 0.41766
1.5 | 0.30003 0.29484 0.60007
2 | 0.358132 0.46352 0.71626
3 [ 0.420510 0.79978 0.84102
4 | 0.450332 1.12699 0.90067
2 [0.25 | 0.0032176 0.000545513 0.09825
0.5 | 0.016891 0.0063679 0.22511
1 | 0.063681 0.05037 0.43708
1.5 | 0.11079 0.13001 0.57653
2 | 0.148571 0.22722 0.66762
3 | 0.200355 0.43936 0.77528
4 |0.232740 0.65668 0.83559
310.25 | 0.00042698 0.000078841 0.11953
0.5 | 0.0037698 0.001572 0.24705
1 | 0.021771 (0.0221) | 0.01914 (0.0199) | 0.44325 (0.445)
1.5 | 0.045694 0.059555 0.56751
2 | 0.068117 (0.0675) | 0.11539 (0.1172) | 0.64829 (0.646)
3~ | 0.103610 (0.104) | 0.24979 (0.255) | 0.74557 (0.746)
4.0 | 0.12898 (0.131) | 0.39682 (0.404) | 0.80204 (0.806)
4 [ 0.25 | 0.000059572 0.000011671 0.13137
0.5 | 0.00089236 0.00039802 0.25845
1 | 0013045 0.0074772 0.44634
1.5 | 0.020074 0.028012 0.56286
2 | 0.033204 0.060158 0.63832
3 | 0.056627 0.145521 0.72945
4 |0.075239 0.245742 0.78317
5 | 0.25 | 0.0000086024 0.0000017582 0.13885
05 | 0.00021933 0.00010256 0.26537
1 | 0.0030124 0.00297799 0.44814
1.5 | 0.0091756 0.013433 0.55996
2 | 0.016814 0.031941 0.63207
3 | 0.032085 0.086290 0.71927
4 [0.045424 0.15489 0.77106

Table 5.3: U, is the velocity at the centerline normalized by 2a,A7;", and Q is the discharge
normalized by 2Aa37;*. The form factor was calculated according to f = ((n+1)Up)'/™. The
numbers in the brackets are from Nye (1965). Calculated values are estimated to deviate less

than 0.22% from exact ones.

that at first sight might seem to indicate an error. Notice that the curves in that
figure result from simple interpolation and that the slope at W = 0 is incorrect. As
n gets larger, increasingly smaller W values will be needed to make the correct slope

become evident.

An interesting feature of Fig. 5.6 is the cross over of the f (W) curves for W ~ 1.2.
For larger W values increasing n and keeping W fixed has the effect of decreasing f.
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Fig. 5.6: Form factor f for parabolic channels as a function of W. Letting W — 0 for a fixed
value of n gives a slope of zero at W = 0. If, on the other hand, n — 0o and then W — 0, the
slope at W is equal to unity. Note the cross over of the curves. This happens at a value of W
for which the drag from the bottom starts to be more important than the drag from the sides.
Since the limiting value of f =1 for W — oo is approached more slowly for larger values of n,
increasing n for a wide channels has the effect of making the glacier more aware of its finite
width. For a narrow channel the situation is the same in the sense that increasing n makes the
glacier more aware of its finite depth. As explained in the text, this can be understood to be
a consequence of the stress redistribution caused by increasing the value of n. The effective
stresses then become more uniformly distributed over the bed, and all sections of the bed tend
to contribute more equally to the overall drag. increasing n has thus the effect of making a
valley glacier more aware of the shape of its cross-section.
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Fig. 5.7: Non-dimensional discharge, Q for parabolic channels as a function of W. Q is related
to the dimensional discharge ¢ through q = 24770a3Q.

For smaller W' values it is the other way round; f increases with increasing n. This
shows that for a wide glacier (wide in the sense of W > 1) the effects of the sides are
felt more closely with increasing n, since the asymptotic value of 1, as W approaches
infinity, is reached more slowly. Conversely, for a narrow glacier (W < 1) the drag
from the bottom has a larger effect on the centerline velocity as n increases. One

60



can therefore say that increasing n has the effect of making a valley glacier more
aware of the shape of the cross-section.

The cross over is where the drag from the side starts to dominate the drag from the
bottom. For an elliptical channel the cross over would hence be expected to be at
W =1 but for a parabolic channel this is not necessary true, and as Fig. 5.6 shows
the cross over is at W > 1. This is of course caused by the curvature of the channel.
Since the point of the bed closest to the centerline is always the point of largest
shear stress (Nye, 1965), the location of this point along the transverse section as a
function of W is important for the relative contribution of the sides to the overall
drag. For a parabolic channel one can easily show that the point of the bed lying
closest to the centerline is on the “side” of the parabolic profile, in the sense that a
straight line from the center to this point then makes an angle that is greater than
7/4 to the vertical, if W > V2.4 Thus, because of the curvature of the parabolic
curve, the cross-over point would be expected to lie between 1 and /2, as it does.

With increasing n the effective stresses across the bed are redistributed and the
stress distribution becomes more uniform. For a wide glacier this means that the
relative contribution of the sides to the drag becomes larger. Hence the sides are
“felt” more strongly and the value of form factor decreases. For a narrow glacier
the situation reverses. This explains the cross over in Fig. 5.6.

For W — oo the parabolic channel becomes an infinitely wide channel of uniform
depth and f - 1and U — 1/(n +1).

Nye gives, for the asymptotic slope of the Q(W) curve,

Q2

where I(r) = [7/% cos™ df, or

Q@ 1 D(1/2T(n+3)
W W = n¥2 T(nt7/2) (5.9)

where T is the gamma function. This expression is valid for all values of n (and not
just for integers as is the case for the expression given by Nye (1965)). Hence, for
n = [1,2,3,4,5] the asymptotic slope of the Q(W) curve is [0.3048, 0.2032, 0.1478,
0.1137, 0.09093] respectively. This is in good agreement with Fig. 5.7. The slope
between W = 3 and W = 4 is for example equal to 0.2173 for n = 2, and 0.1470

for n = 3.
In the limit W — 0, it can be shown (Nye, 1965) that (n + 2)(n +4)Q — 4Wn+2,

which explains the flattening of the curves in the figure.
5.1.5 Flow over a sinusoidal bed

The flow over a frictionless sinusoidal bed was calculated and the results compared
with the analytical solution given in Sec. 4.1.

4To see this minimize R? := yg + z2 with respect to yo, giving y = bpy/1 - W?/2 and z =
ap((1 — W?/2) — 1)%, and then solve yo/20 = 1.

61



Fig. 5.8: Calculated horizontal velocity of flow over sinusoidal bed for n = 1. The vertical
position of the bed z; is given by: 2z, = asinkz. The velocities were normalized by the sliding
velocity u,. X and Z are non-dimensional coordinates defined as X = kz and Z = kz. The
peak of the sinusoidal bed is at X/m = 1/2 and the trough at X/m = 37/2. The values
of the slope parameter ¢ = ak, and the thinness parameter § = 1/(hk), were ¢ = 0.37 and
§ =0.05/.

In Fig. 5.8 the calculated horizontal velocity field for a/A = 0.015, A/h = 0.1, sina =
0.01 and p;g = 8.99577 x 103kgm~2m~3 is shown. The domain had dimensions of
200 times 200 meters, and the FE mesh had 5395 nodes and 5038 elements. For
the region in the figure the nodal values were used for creating an evenly-spaced
grid with 200 times 200 points, which was then used for the contouring. The points
% and UF3* can be seen.

The velocity field was normalized by the calculated sliding velocity u, = 21.24472
m/a, which gives s(37/10,1/(207),1) = 0.9866, a value close to the theoretical one
of 5(0,0,1) = 1. s(e,d,n) is the sliding function, defined as

1
et lku,
2417

The mean of the vertical velocity (< v, >) along the bed should be equal to zero,
but due to numerical errors will never be exactly so. The calculated value was
<v,>= —1.417 x 107*, or five orders of magnitude less than the sliding velocity.

s(e,8,n) :=

(5.10)

In Fig. 5.9 the horizontal velocity field as given by Eq. (4.1) is depicted. Here again
the velocity field was normalized by the sliding velocity, but the value for u; used
was not the numerical one, but that according to (4.3). It can be seen that there
is almost no difference between these two figures by looking at Fig. 5.10, where the
difference is shown in percentage terms. The difference is small, always within the
range of —0.06 to 0.12%. It is therefore concluded that the errors involved with
the numerical solution are less than 0.1%. This error estimate can only be used for
the calculations of linear viscous media. For non-linear rheology the corresponding
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Fig. 5.9: Analytical horizontal velocity for n = 1, ¢ = 0.37 and § = 0.05/7. Horizontal
velocity v.(z, z)/us as given by Eq. (4.1). A comparison with Fig. 5.8 shows how similar the
results obtained by FE calculations are.

non-linear equation system has to be solved iteratively until a prescribed accuracy is
obtained. In principle a much better accuracy can be obtained but that may require
an unreasonably large amount of computer time.

The iterations were continued until the maximum change in velocity over the whole
model divided by the maximum velocity was less than some prescribed value, which
was chosen to be equal to 0.0001 or 0.01 % for all of the calculations. Although this
is a truly small value the accuracy of the non-linear results will be somewhat less
than the linear ones. How much larger the errors are is difficult to estimate exactly
since no analytical solutions are available, but assuming that the only additional
source of error is the iteration procedure the errors should be less than 0.2 %. There
is, however, another source of error; the effective viscosity distribution can only be
as accurately represented as the FE discretization allows, with every integration
point assigned one effective viscosity value. This discretization error does not play
a role if a linear viscous medium is modelled, since then the viscosity is constant
over the whole domain. In the non-linear case it must be estimated by solving the
same problem with different FE meshes. Several calculations using a mesh of 4302
elements and 4636 nodes were therefore done. The results, compared with the finer
discretization, differed by less than 0.3 %.

5.2 Discretization errors

Discretization errors were estiinated by: a) generating several meshes with different
numbers of nodes and elements, and b) by comparing the nondimensionalized results
obtained by different meshes characterized by the same nondimensional numbers ¢,
§ and n, but different dimensional numbers such as a, A, 7 and h.
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Fig. 5.10: Percentage differences between a numerical and the analytical solutions of highly
viscous flow over a sinusoidal bed.

Differences between analytical and numerical results for the horizontal velocity in percents,
i.e. 100 (v2(x,z) — vEB(x, 2))/ve(z, z), where a stands for analytical and FE for numerical
results obtained by an FE calculation, for ¢ = 0.37 and § = 0.05/7. One sees therefore the
percentage difference between Fig. 5.8 and Fig. 5.9. The error is never larger than 0.12 %, and
usually much less. There is a small systematic tendency of the error to be positive for X > =
and negative for X < w. By generating similar figures for different values of the thinness
parameter §, it was discovered that this discrepancy is due to the assumption in the derivation
of the analytical solution that § is approximately zero. The numerical solution is therefore even
more precise than the figure indicates. The analytical solution is defined for z > 0 whereas
the numerical one is defined for z > z5. No attempt was made to account for this difference,
which is the reason for the “black” area close to (X, Z) = (1/2,0).

The lines in Table 5.4 show the percentage difference in s(n, ¢, d) obtained from two
calculations done with different values of the dimensional parameters A, a, and h,
which give the same dimensionless ratios € and 6 (r = ¢/27 and ¢ = 274), and
should therefore give exactly the same results. The error is almost always less than
0.2%. For n # 1 there is a tendency of the error to get larger as r increases. This is
most probably due to the fact that as r becomes larger there is an increased stress
concentration at the peaks of the bed protubances, leading to large variations in the

effective viscosity over a limited area, which can only be approximately represented
by the FE mesh.
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[ n ' Corrugation (r) [ Asperity (<) [Diﬂerence (%T]

1 1.2566370 0.10 0.026
3.1415930 0.10 0.008
0.1005310 0.05 0.001
0.1130973 0.05 0.001
0.1256637 0.10 0.001
0.2513274 0.10 0.001
0.3141593 0.10 0.003

0.376991 0.10 0.005
0.5654867 0.10 0.945
0.6283185 0.10 0.011
0.0565487 0.05 0.055
0.0628319 0.10 0.092
0.0062832 0.10 0.009
0.0691150 0.05 0.067
0.0753982 0.05 0.001
0.0816814 0.05 0.153

2 1.2566370 0.05 0.650
1.3823010 0.05 0.209
0.6283185 0.05 0.058
0.9424778 0.10 0.043

3 1.2566370 1.00 0.220
1.2566370 0.1666667 0.435
1.3823010 0.05 0.235
0.1256637 1.00 0.215
0.1256637 0.10 0.044
0.1256637 0.50 0.145
0.3769911 0.10 0.176
0.6283185 1.00 0.182
0.9424778 0.10 0.407

4 1.2566370 0.20 0.059
1.3823010 0.05 0.877
0.9424778 0.10 0.208

5 1.3823010 0.05 0.991
6.2831850 0.05 0.216

Table 5.4: Comparison of results obtained for different FE grids but for the same dimensionless
numbers n, r and 5. Every line of the table shows the values of n, 7, and ¢ for two calculations
with different values of A, a, and h (not tabulated). The last column shows the difference
in percent of the calculated values for the function s(n,<,d) between these two calculations,
which should theoretically be zero.
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CHAPTER 6

Numerical Calculations of Flow Over
a Sinusoidal Bed

Up to this point the emphasis has been on theoretical work done on perfect sliding
over a sinusoidal bed although some numerical work has also been mentioned. In this
chapter the flow of a viscous material over a sinusoidal bed for free-slip boundary
conditions will be analysed. The analytical results that are only valid for slight
roughness will be extended to extreme roughness and the effect of a non-linear flow
law on the sliding velocity and on the flow characteristics will be examined.

6.1 Objectives

The flow of linear viscous material over a sinusoidal bed for ¢ < 1 and § = 0 is
rather well understood. Eqgs. (4.1), (4.2), (4.32), (4.31) and (4.33) gave some new
insight. In general however, even for the linear case, the dependence of the sliding
velocity on ¢ and é is not known. For a power-law fluid the relationship is still less

clear since the asymptotic behavior of u, for ¢ — 0 is, as said before, a subject of
debate.

Neither is the effect of é on the sliding velocity clear. Claims have been made that
up depends linearly on é (Fowler, 1979) independent of n, but this has also been
questioned since physically one might expect wu, in the limit of small é values, only
to be dependent on h through its dependence on 7.

The aim of the numerical modeling was to get answers to the following questions:

1. How does U, depend on ¢ in the limit ¢ — 0 for § < 17 Is Eq. (3.23) correct?
2. How does uy vary as a function of n.

3. How does u, depend on §?

4. How exact are the predictions made for the appearance/disappearance of ex-
trusion flow at certain € values?

n

Is extrusion flow for n > 1 possible, and how does n effect its magnitude and
its dependency on €7
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6.2 Solution method

The differential equations that are to be solved are the conservation Egs. (2.4), (2.5)
together with Glen’s flow law (Eq. (2.1)) given in Sec. 2.1.1.

The solution procedure applied was the method of finite elements. Commercially
available FE software, the general purpose program MARC, was used for the calcu-
lations. This program proved to be well suited, especially because the user can add
user-defined subprograms to the main code and recompile it. In this manner the
program can be extended and modified in order to fit the needs of the particular
person using it. MARC is actually not designed for fluid analysis and Glen’s flow law
is not implemented. The implementation of Glen's flow law, after having contacted
the program developers, nevertheless turned out to be rather easy. One of the strong
points of MARC is that it allows the calculation of a truly incompressible medium
and offers iteration algorithms for the handling of systems of non-linear equations.

A comprehensive testing of the correctness of the numerical results obtained with
MARC was done. A description of the testing procedure and the results obtained
is given in Chapter 5. In addition to giving information on the numerical errors
involved the testing procedure also gave results that are possibly of general interest.
An example of this is a calculation of form factors for parabolic channels for a
considerably larger range of parameters than was originally done by Nye (1965).

The FE element chosen was a four-noded isoparametric element with bilinear in-
terpolation. Linear elements tend to give better results for non-linear calculation
although a somewhat larger number of subdivisions may be needed. To enforce
incompressibility two methods were used: a) selective integration, where the four
Gaussian points are used for the deviatoric contribution, and the centroid for the
dilatation contribution, a method also known as the constant dilatation method,
and b) the Herman variational principle using (v, p)-formulation (mixed formula-
tion) where a fifth-node for the pressure degree of freedom is added to the center
of the element. The pressure is constant within the element (it can be shown that
the pressure interpolation function must be of one degree lower than the velocity
functions if the resulting equation system is to be non-singular).

To improve the bending characteristics of the element the assumed strain formula-
tion was used, where the interpolation functions are expressed with respect to the
distorted element.

Due to the non-linearity of the flow law the solution must be sought in an iterative
way. The method of direct substitution was used, i.e. the old effective viscosity
distribution was repeatedly substituted by a new one based on the calculated strain
rates using the old distribution. The iteration was continued until the ratio of the
maximum change of the velocity at some node in the FE mesh during the last
iteration, divided by the maximum node-velocity, was less than a specific value, set
to 0.0001. Experience with other FE programs such as RHEO-STAUB has shown
that it is sometimes necessary to damp the iteration in order to ensure convergence,
and to use as a new effective viscosity some weighted average of the old viscosity
and the one based on the resulting strain rates. With MARC this turned out not

to be necessary except for n < 1.
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To reduce computation time the effective viscosity of every integration point of
every element was written to a file and during subsequent calculations the resulting
effective viscosity of the most similar calculation was used as a starting value, which
led to substantial reduction of CPU-time.

6.3 Mesh generation

Since a large number of models with various different € and ¢ values was to be calcu-
lated, it was impractical to generate a new FE mesh for each and every calculation.
Instead a small number of rectangular meshes were generated, which were then —
through the use of transformation formulae — transformed into the desired shape.

The transformation formulae were

T =ae” Mg 4 & — €167 — &eF)sinkr + 1z, (6.1)
Z = a(6e7™% — £2657) coskz + z(1 + ak(€) + &) (e7*/® — e7h/9), (6.2)

where ek
& = Yy and &= -1+¢, (6.3)

(z',2') denote the transformed values and (z,z) the original ones. Note that the
bed was defined by
20 = acoskzx (6.4)

and not zop = asin kz. In some cases the mesh was scaled linearly in both directions
prior to the use of (6.1) and (6.2), keeping the wavelength fixed, to obtain different
wavelength-to-thickness ratios. In this way it was also possible to apply different
scalings to get different meshes with the same ¢ and d values, making it relatively
easy to estimate the numerical error associated with a change in mesh geometry.

The transformation formula was found by starting with the formulation:

'

z = f(z)acoskz + g(z) (6.5)

where f(z) and g(z) are some unknown functions satisfying: f(0) = 1, f(h) =0,
g(0) = 0 and g(h) = 1. It is desirable that the transformation formula gives ap-
proximately a conformal mapping, but it should not be an exact conformal mapping
because there will inevitably be a “crowding” of the transformed 2 -lines, giving
bad aspect ratios for the generated elements (Menikoff and Zemach, 1980). The
Cauchy-Riemann equations are

t,=z, and rI,=—z, (6.6)
Putting (6.5) into the left-hand side of (6.6) and integrating gives
x = akF(z)sinkzr + K(z), (6.7)

where F' is the integration of f and K is an unknown function. Using the right-hand
side of (6.6) gives a differential equation for f(z), which can easily be solved

f(2) = are™ —aye®?, (6.8)
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where a; and a, are constants, and ¢g. = K, which gives g(z) = a3z and K (x) = asr.
It is required that for z = 0, z is transformed to zy, and to z =hforz=h In
order to avoid the negative aspects of crowding the factor ¢~2/A=2%/2 was introduced,
which makes the transformation non-conformal. It then turned out to be necessary
to ensure that the transformation is one-to-one!, which was guaranteed by requiring
2, >0and 7, > 0. Eq. (6.1) and Eq. (6.2) can be seen as a compromise between
the positive aspect of a conformal mapping giving small skewness values for the
generated elements, and the negative aspect of the crowding, which gives large
aspect ratios. This transformation gave an excellent FE mesh and could be used for

all values of € and 4 of interest.

6.4 Boundary conditions

The top of the model is a free surface; there o,, and 0., are equal to zero. The
atmospheric pressure was ignored.

The perfect sliding condition was applied to the bottom nodes. It was implemented
by suppressing all movements in the direction normal to the bed and allowing free
movements in the tangential direction.

At the sides a periodic velocity boundary conditions was specified, .e. the left side
was forced to have the same velocity profile as the right side. The model is infinite
and periodic. No prior knowledge of the velocity or of the stress tensor along the
edges was needed.

6.5 Post-processing

There were basically two types of post-processings performed. One was the direct
visual inspection of the results of an individual calculation with the post processing
program Mentat. This was time consuming and could only be done for a limited
number of runs. The other one consisted of an automatic calculation of all quantities
of interest. Various subroutines from the IMSL collection of numerical algorithms

were applied in doing so(IMSL, 1989).

A one dimensional periodic B-spline interpolation through the velocity values at the
bed was made to obtain equally-spaced velocity values along the r axis, which were
then Fourier transformed and used for calculating the mean of v,, i.e. the sliding

velocity.

The velocity field was interpolated by the use of a bilinear interpolation function

that was consistent with the FE mesh and the FE interpolation functions used.

The searching procedure for U5 and U;,‘ri/"Q involved a non-linear constrained min-
imization /maximization problem because the = extension of the region of interest
. . i . ymax

is dependent on the value of r. As starting values for the positions of U773 and

A function T : V — W satisfying T'(z) = T(y) and implying r =y, is said to be one-to-one

on V.
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L/';';;ri/"Q the analytical results discussed in Sec. 4.3.2 were used. The positions of U:}‘a;
and U;;‘;ri/“2 within the FE mesh were also found using the nodal velocity values and
compared with those found by interpolation. The difference was never large, which
is the expected results, or comparable to the size of the elements. By interpolation
of the nodal values somewhat more precise results were obtained than otherwise, as

7> and g’,‘ri/“2 could then be found somewhere within the elements. This allowed
a better comparison between theoretical and numerical results.

6.6 Numerical results

6.6.1 Sliding velocity

In Sec. 3.2 it was shown that in the limit as ¢ — 0 and for § < 1 the sliding function
s, defined by Eq. (3.24) will be a constant ¢, that is independent of € but depends
on 1, i.e.

lim s(e, 6,n) = (6, m), (6.9)

and it was argued that ¢y = ¢'™" with é = 2. Otherwise no estimates of the sliding
function s could be made, and it was realized that numerical work could give some
more information about s.

The sliding function was calculated for n = 1 ton = 5, for r = 0.001 to r = 1.0
and for ¢ in the range from 0.025 to 1.0. Some of the results can be seen in Fig. 6.1
and in Fig. 6.2, which show Ins as functions of Ine for n = [1,2,3,4,5] and for
6 =0.05/(27) < 1 and 6§ = 0.1/(27) respectively. The figures display a number of
interesting features:

e For small € values all curves have zero slope. Eq. (6.9) is therefore correct, and
the sliding velocity is, for € small enough, proportional to e (1™ as Eq. (3.23)
indicates. This can be seen more clearly in Fig. 6.5-a that shows the function
Us, or the nondimensional sliding velocity (defined through Eq. (3.6)), for
£ < 0.125.2 The slope of the f(g) curves is given in Table 6.2, and depicted
as a function of n in Fig. 6.5-b. The calculated slope is —1.017 — 0.986 n, or
within 2 % from the theoretical slope of —(1 + n).

e The range of the validity of Eq. (3.23) depends on n. As n increases this range
of € values gets smaller, contrary to statements made by Fowler (1981, p. 675)
who argued that e™*! had to be small. For n = 5, ¢ must for example be smaller
than about =2 & 0.135 (r < 0.0215) for Eq. (3.23) to be a approximation valid
within 20%. Although a value less than 0.02 for r is not unreasonably small,
this fact considerably reduces the usefulness of Eq. (3.23). For n = 1 the
variation of s is slow; not until ¢ = 1.0 is s 20% different from s(0,0.05/2m, 1).

e For € and 0 fixed In s changes by a constant amount forlevery unit change in
n, .e. In(s(e,8,n + 1)) — In(s(e, 6,n)) = A(e,8). It is an important fact that

2U, and s are connected through s = me+1U,.
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Fig. 6.1: The logarithm of the sliding function s as a function of Ine and n for ¢ = 0.05.
Every symbol represents the result of one calculation. The constant slope of the curves for
€ = 0 shows that u, oc ¢=("*1) in that limit. The range of ¢ values for which this asymptotic
expression is correct depends on n, and becomes smaller with increasing n. Note that for every
particular value of ¢ there is a constant shift in the value of In s with each unit increase in n.
This means that In s is a linear function of n. It is therefore not necessary to calculate s for
every possible value of n; all that is needed is a simple interpolation or extrapolation of the
calculated values.

A does not depend on n. Hence, one does not have to calculate s for every
possible value of n. A simple interpolation or extrapolation based on several
different n values will suffice. In Fig. 6.3 the logarithm of the sliding function
s is shown as function of n for a few roughness values r and a fixed corrugation
value of ¢ = 0.005. It is seen that a straight line always results, but with a
slope dependent on €. For ¢ = 0.005 (the smallest value of ¢ in the figure)

In s(0.005,0.05/27,n) = 0.5138 — 0.5370n (6.10)

with a standard deviation of 0.010. Eq. (3.29) predicted this power-law be-
havior but with a slope of —In2 =~ —0.69. Notice that relation (6.10) gives
Ins = —0.0232 # 0 for n = 1, although s was defined in such a way that
Ins(0,0,1) = 0. This discrepancy is not entirely a result of numerical errors
since it was obtained with finite values of ¢ and ¢.

For 6 = 0.05/2n, s was approximated as
6 .
s(e,6,n) = c2(d, n)e™ (6.11)
i=0

for ¢ < m/2. The resulting curves are seen in Fig. 6.4, which shows s as a
function of £2, and the values of the Taylor coefficient are given in Table 6.1.
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Fig. 6.2: Ins as a function of Ine and n for ¢ = 0.1. The only difference between this figure
and the previous one is the value used for §. No difference can be seen, showing that the
results do not depend on the exact value of 4.
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Fig. 6.3: Ins as a function of n for several roughness values r and ¢ = 0.05. For every
roughness value 7 a linear relationship between In s and n is found, with a slope that depends

on r. s is defined in such a way that the limiting value of In s for » — 0 and n = 1 is equal
to unity.



If 5 is needed for some other n, s should be calculated according to Eq. (6.11)
and interpolated or extrapolated using the fact that In s(,,n) = é; + én where
¢, and ¢, are obtained through a least squares approximation.

Attempts to extrapolate to ¢ = 0 did not convincingly result in improvements,
partly because practically the same slopes were obtained for different § val-
ues as long as 6 < 1 but more importantly because s was calculated for a
rather limited number (= 10) of wavelength-to-thickness ratios. Comparison
of Fig. 6.1 and Fig. 6.2 shows that a factor of two change in § does not change
s significantly, ¢.e. € is much more important for s than § (How s depends on §
will be discussed in Sec. 6.6.2.). By calculating the slope of the s(¢) curve for
different values of 4, it could be shown that the small but finite value of § is
responsible for the 0.64 % deviation of ¢¢(0.05/27,1) from 1 seen in Table 6.1.
Although this deviation is small, a standard statistical test showed it to be
significant.

The values of ¢4 for n = 3 from Table 6.1 is in agreement with the esti-
mate (3.26) from Meyssonnier based on theoretical arguments. The value of
¢2(0,3) = 1.163 + 2% from Table 6.1 is, however, most probably not in ac-
cordance with his estimate for ¢5(0,3) = 2.4. This deviation could be caused
by the limited number of calculations, numerical errors, or both. Despite this
difference there seems to be no reason to doubt the general correctness of
Meyssonnier’s findings.

The numerical results are also in agreement with Lliboutry’s (1993) theoretical
upper estimate for s(0, 3)

5(0,3) < 0.33839 + 3.688¢% + 0.17¢* (6.12)

and his tabulated values for s (Lliboutry, 1993, p. 62). His upper estimate is,
however, up to several times greater than the calculated values.?

All curves in Fig. 6.2 intersect at Ine = —0.3. This fact does not need any
special attention. If one wants to compare s for different n as a function of ¢,
s would have to be made comparable by, for example, normalising it with co.
Then all one could say is that s(e,d,n+ 1) > s(e,é,n).

For Ine > 1, U, x €, where p depends on n. This can be seen in Fig. 6.5-
¢, and in Fig. 6.5-d where dInU,;/8lne for Ine > 1 as a function of n is
depicted. The best straight line approximation is given by —1.11 — 0.228n
with a standard deviation of 0.010, i.e. U, ox e ~1-1170-228n  Hence, for extreme
roughness the sliding velocity is not dependent in the same way on ¢ as it is

for slight roughness.

s(e,d,n) as a function of € and < for n = 3 is shown in Fig. 6.6. Diamond symbols
represent the (e, ¢)-pairs for which s was calculated. The lines were calculated by
interpolating this randomly scattered data. It can be seen that s depends more
strongly on ¢ than ¢, and that ds/Js is negative and increases in magnitude as ¢

increases.

3Lliboutry (1993) uses the symbol V' for the sliding function.
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Fig. 6.4: s as a function of €% for § = 0.05/2r and € < 7/2 (7 < 0.25). The symbols
represent calculated values and the lines are least squares approximations using s(e,4,n) =
Ef:o c2i(6,n) €%. Table 6.1 gives the values for c,;.

[ n ] 1 | 2 3 4 | 5 ]
co 0.9936 | 0.5661 | 0.3294 | 0.1943 [ 0.1153
c2 -0.1486 | 0.9328 | 1.163 | 1.055 | 0.8701
c4 -0.1137 | -0.4997 | -0.3795 | 0.06465 | 0.2984
cs 0.08996 | -0.3361 | 0.3066 | 0.4760 | 0.8857
cs -0.01813 | 0.5192 | -0.4693 | -0.7965 | -1.034
cio | -0.001253 | -0.2334 | 0.2459 | 0.3642 | 0.3583
ciz | 0.0006450 | 0.03723 | -0.04077 | -0.05325 | -0.0380

st. dev. | 3.5 x 107° | 0.0028 | 0.0027 | 0.0067 | 0.0074

Table 6.1: Taylor coefficients of the sliding function s(e,8,n) = Y oo, c2:(d,n)e* for § =
0.05/27. These values can be used for § = 0 with less than 2% error.

n Qn b, standard deviation
1 -1.159 -2.002 0.00071
2 -1.671 -2.987 0.0017
3 -2174 -3.976 0.0032
4 -2.653 -4.962 0.0047
5 -3.110 -5.943 0.0060

Table 6.2: Linear regression coefficients for InU,(¢,0.05/27,n) = a, + b,n for ¢ < 0.125.
Theory predicts b, = —(n + 1) for ¢ — 0.
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Fig. 6.5-a: InU, as a function of ¢ and n for
¢ =0.05 and € < 0.125.

The straight lines show the best linear
approximations through calculated values
given by the symbols.
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Fig. 6.5-c: InU, as a function of € and n for
¢=0.05and € > 2.7.

The straight lines show the best linear ap-
proximations though calculated values given
by the symbols.
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Fig. 6.5-b: U, as a function of n for ¢ = 0.05
and £ < 0.125.

Each point represents the slope of a curve
in Fig. 6.5-a for the corresponding n. The
best straight-line approximation is given by
—1.017 — 0.986n with a standard deviation
of 0.0025, in an agreement with the theo-
retical prediction of —(1 + n) for the slopes
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Fig. 6.5-d: U, as a function of n for e > 2.7
Each point represents the slope of a curve
in Fig. 6.5-c for the corresponding n. The
best straight line approximation is given by
—1.11-0.228n with a standard deviation of
0.010. No theoretical prediction known.

The sensitivity of the sliding velocity to changes in glacier thickness is therefore
larger for high corrugation values than for small ones.

6.6.2 The dependency of u; on &

The contour lines in Fig. 6.6 are more or less straight lines (deviation from straight
lines could be a result of the interpolation procedure) and this fact indicates that s
is possibly a linear function of 4. By plotting s as a function of < for different values
of n and e, as done in Fig. 6.7, it is found that s is indeed a linear function of ¢ and
that the slope increases with increasing ¢ and. more importantly, with increasing n.
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Fig. 6.6: Dependency of s on ¢ and ¢ for n = 3. Contour interval is 0.05. Diamond symbols
represent the (£, ) pairs for which s was calculated. It can clearly be seen that s depends more
strongly on ¢ than ¢, and that ds/ds is negative and increases in magnitude as ¢ increases.
As explained in the text, a closer inspection of the numerical results showed that the sliding
function s depends linearly on §. The contour lines should therefore be straight lines, and the
deviation from that form results from errors associated with the interpolation.

Hence, the sensitivity of the sliding velocity to changes in glacier thickness increases
with increasing n. Except for n = 1, s is a decreasing function of 4 and u, therefore
decreases somewhat faster than ;.

For r = 0.02, s changes less than 6% for 0 < ¢ < 1 even for n = 5. For ¢ « 1 the
variation of the sliding velocity is expected to set up some surface variation that
in turn will change the stress pattern at the bottom resulting in a different sliding
velocity. ¢ < 1 can therefore be seen as a part of the definition of the problem
and not a simplifying assumption. If ¢ <« 1 is not fulfilled the notation of sliding
velocity is not clear. For reasonable ¢ values (¢ < 1/4) ¢ does not influence the
sliding velocity significantly unless n > 3 and r > 0.1. As an example, for n = 5 and
r = 0.2, s changes =~ 20% as ¢ goes from zero to 0.25. This is unexpectedly large,
and it is important to get some rough idea of what is causing this ¢-dependency.

The following simple explanation turns out to be helpful. For ¢ < 1 the contribu-
tions of the crest (0 < X < 7) and the trough (r < X < 27) of the sine wave to the
average shear stress are equal. As ¢ increases this is no longer true as higher har-
monics that disturb this symmetry start to be important. The stresses become more
and more concentrated about the crest meaning that the force balancing gravity is
increasingly supported by it. The glacier thickness, as well as the driving force, are
therefore effectively reduced. Let us assume that the driving stress is given by

7 = pg(h — p(r)a) sin « (6.13)
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Fig. 6.7: s as a function of ¢ for r = 0.02 (solid lines) and r = 0.2 (long dashes). The numerical
results indicate that the sliding function s depends linearly on the \/h ratio (asperity). The
slope of the s(¢) curve depends on n and ¢, and it can be shown that this dependency is
approximately linear, and that s(e,d,n) = (1 — eén)s(e,0,n), for ¢d < 1.

with 0 < p(n) < 1, where p(z) is otherwise an unknown function, which depends
on n because the shift in stress pattern and the degree of stress concentration is
expected to depend on n. If the only influence of a change in a is given by this
reduction in driving stress then it follows that

(To/78)"
= (1-eédp(n))" (6.14)
“€1 (1 - ednp(n))

s(e,s,n)/s(e,0,n)

The slope of the s(8) graph should therefore be proportional to € and nr(n). The
ratio s/(1 — €)™ as a function of ¢ is seen in Fig. 6.8. Comparison with Fig. 6.7
shows that the slopes are greatly reduced, meaning that the most part of the &
dependence can be explained in this way with p(n) = 1. The systematic change of
s/(1 — e8)™ as a function of the asperity ¢ is (for a reasonable range of §) so small
that it is of no practical importance. The curves, however, seem to be somewhat
over-corrected for small n values, and under-corrected for large ones. This would
mean that p(n) increases with n or that the stress concentration becomes larger for
increasing n. An inspection of the numerical results showed this to be true.

Of interest is the sliding velocity as a fraction of the total surface velocity. If one
writes the surface velocity u, as a sum of the deformation velocity ug and the sliding

~1
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Fig. 6.8: s/(1 —€8)™ as a function of ¢ for r = 0.02 (solid lines) and r = 0.2 (long dashes).
By comparing this figure with the previous one it can be seen how much of the dependency of
s on § can be accounted for by the assumption s(e,d,n) = (1 — €6)™s(g, 0, n).

velocity?
Zf h s
Us = 2A Tb (m + g"+1k> (615)
one finds
Up 6n+1 -1 6 16
Api=—=|14 —— ) )
P, ( M (n+ 1)53) (6.16)

The ratio that determines the fractional sliding velocity (A,) is therefore:

6n+l

R (6.17)

and A, can be quite large. For 7 = 0.1, ¢ = 0.05 and n = 3 one finds for example,
using the values from Table 6.1, that A, = 0.58. Using r = 0.05 gives A, = 0.99.
Sliding over a hard bed without bed separation can be significant. It is important
to realize that Eq. (6.16) gives the maximum fractional sliding possible. In nature
ice will always experience some friction from the bed reducing the sliding velocity
(possibly down to zero).

Eq. (6.16) shows that 9A,/94 depends on . Observation of changes in fractional
sliding velocity as a glacier changes its thickness could therefore give information on
the roughness of the glacier bed.

4This is only approximately correct. For n # 1 the ice close to the bedrock becomes somewhat
softer and the internal deformation therefore somewhat larger than otherwise expected.
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Fig. 6.9: The velocity increase of U7)5* with respect to the velocity at bed at X = 7/2, for
¢ = 0.05. With increasing €, U73* moves towards U;‘;gd'e and disappears at € = €.jicar. FOr
n =1 and § < 1 this limiting value is approximately equal to 0.138. The vertical dashed-
dotted line marks this £ value. For n = 1 there should therefore theoretically be no symbols
to the right of the line. The numerical calculations confirm this. The value of ¢ above which
no local velocity maximum was found depends on n. This is reflected in the figure by the fact
that symbols are found at progressively larger £ values with increasing n, showing that the
magnitude of the velocity maximum is both enhanced by the non-linearity of the flow law and
that it exists up to larger roughnesses.

6.6.3 Extrusion flow and non-linear material behavior

As explained in Sec. 4.3 extrusion flow is expected to occur above the point where
Upjy for n = 1 arises, as long as ¢ < 0.1378839, and below the point where _.;',‘ri/"z
arises as long as ¢ < 1/2. Extrusion flow is caused by the bedrock undulations
and can therefore be seen as a geometrical effect. The flow law can, however, be

expected to have an influence on the magnitude and the onset of extrusion flow.

In Fig. 6.9 the percentage of increase of the velocity U5* over the velocity at Zo(m/2)
as a function of ¢ is shown for n = 1 to n = 5. The vertical dashes-dotted line is at
e = 0.1378839. To the right of that line no plus symbols are shown, indicating that
in agreement with the theoretical prediction for n = 1 no U7)5"-points were found
for larger ¢ values. The long dashes show the theoretical asymptotic slope fore — 0.
Again a good agreement between numerical and analytical results is found.

For n > 1 extrusion flow exists. As n increases the range of ¢ values for which
extrusion flow is found becomes progressively larger. The velocities also become
progressively larger. Extrusion flow is therefore enhanced by the non-linearity of
Glen's flow law. For n = 3 it is for example found for € up to ~ 0.2 or 7 = 0.03, and
the velocity is &~ 10% larger than at the bed. The position of U7)5* for n = 1 follows
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Fig. 6.10: Relative decrease of U:;’,‘ri/“2 with respect to the velocity at the bed at X = 3rn/2
for ¢ = 0.05. For ¢ — 0 there is no velocity variation and the velocity of the local velocity
minimum is the same as the velocity at bed. Thus for ¢ — 0 all the curves approach the value
0. For ¢ > 0 the minimum velocity is always less than the velocity at the bed (extrusion flow)
so that the percentage increase is always negative. With increasing ¢, U;‘,i/‘“l becomes, as a
percentage of the bed velocity, larger negative, and at some particular value of € a minimum is
reached. The position of this minimum moves to larger ¢ values with increasing n. The velocity
minimum is also stronger for larger n values (larger negative numbers). The non-linearity of the
flow law therefore has the effect of enhancing the vertical velocity variation in relative terms,
and with it the extrusion flow behavior. On the basis of Morland’s solution it was expected
that for a linear medium no velocity minimum would be found for € > 1/2. The results of the
numerical calculations do not, as can be seen in the figure, support this conclusion. Ug‘,’,i;‘? for
n =1is found up to € = 1.18. The reason for this discrepancy lies presumably in the fact that
1/2 &« 1, and that therefore the results of the second order perturbation theory, were ¢ < 1
is assumed, cannot be trusted.

closely the theoretical prediction. For n > 1 the U;’}%" moves progressively closer to
bed. This is in agreement with other numerical calculations (Raymond, 1978).

Fig. 6.10 shows the minimum of the absolute horizontal velocity at X = 37/2 as a
percentage of the velocity at the bed i.e.

IDOCmfﬂﬁfﬁfifb"Q (6.18)

for ¢ = 0.05 as a function of . The theoretical prediction for n = 1 was that Lﬂ;’,‘ri/“._,
should exist for ¢ < 1/2. Symbols below the horizontal zero line indicate that a
minimum was found. For n = 1 a minimum was found for < up to 1.17 and not only
up to € = 1/2. The theoretical value is based on a perturbation analysis which is
only valid for ¢ < 1. Since Ug‘,‘ri/".z exists for ¢ > 1 it is clear that the perturbation
approach could never have given the correct answer. The asymptotic change of the
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Fig. 6.11: Vertical position of U7, (s = 0.05). The numbers on the y-axis correspond to a
vertical distance of 1/k. For ¢ — 0, U;',‘r% is situated at Z =1, or 2 = 1/k. If the minimum
velocity at kxz = 37/2 is found at z = —a, U‘;’,‘r‘}‘2 is at the bed. This corresponds to kz = —ka
or Z = —¢. The line made of points and long dashes gives the position of the bed as a function
of . If the symbols lie on the line there is no local velocity minimum above the trough of the
sine curve. Note that with increasing n, U377, moves away from the bed-line.

velocity decrease as € — 0, shown as a solid line, is however reproduced. There
is therefore a good agreement between theory and numerics at ¢ values where an
agreement can be expected. Notice that the two figures are practically identical
indicating that the exact value of ¢ is unimportant as long as it is small. This is
also correct for others figures shown below.

For all calculated values of n the velocity decrease (shown in the figures as a nega-
tive velocity increase) becomes larger as ¢ increases from zero, reaches a maximum
and decreases again. There is always some ¢ value above which no extrusion flow
is found. As n increases the extrusion flow is strongly enhanced. It again be-
comes progressively larger in magnitude and exists for larger € values as n increases.
Comparison of Figs. 6.10 with Fig. 6.9 shows that extrusion flow behavior is more
dominant above a trough than above a riegel. Above a trough a 30 to 40 % decrease
in horizontal velocity with height over a distance of ~ 1/k is possible and could for
example cause a considerable inversion of a bore-hole inclination.

U;’,‘,i/"Q arises for ¢ = 0 at Z = 1 and moves towards the bed with increasing ¢. How
this happens for n = 1 to n = 5 and ¢ = 0.05 can be seen in Fig. 6.11. The
dashed-dotted line gives Z = —¢, which is the position of the bed. As long as the
symbols remain above the dashed-dotted line U{T,‘r'/"Q exists. It is interesting that U375
is situated slightly larger above the bed for larger n values which is opposite to the
behavior of UT5". It is therefore not a general rule that characteristics of the ice

deformation tend to approach the bed with increasing n. Another interesting feature
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Fig. 6.12: Velocity at (X, Z) = (37/2, —¢) as a fraction of the sliding velocity (¢ = 0.05). Note
that the velocity at the base of the trough at first increases with ¢, and that the non-linearity
of the flow law makes this increase larger and displaces it to larger ¢ values .

of the figure is that Ua",‘ri/“2 remains more or less at a constant height of approximately
1 (or at A/27 in dimensional units) above the bed for all values of €.

The velocity within an overdeepening as a fraction of the sliding velocity is often of
interest. It is for example sometimes important to know at what roughness values
the ice within the overdeepening effectively remains there without taking part in the
overall glacier motion. What exactly is meant by saying that the ice does not move
depends of course on what part of the overdeepening — at the bed or only “close”
to the bed — one is referring to, but it turns out that this is, at least for the case
of a perfectly lubricated bed, relatively unimportant, as will be shown below.

The velocity at (X, Z) = (37/2, —¢) as a fraction of the sliding velocity (cf. Fig. 6.12)
becomes, as ¢ increases from zero, at the beginning somewhat larger. This unex-
pected result is a manifestation of the extrusion flow and is more important for
non-linear than for linear flow behavior. As ¢ increases further the ratio v(X =
3n/2,Z = —¢)/u, decreases fast; it is less than 0.1 at € = 1.6 and negligibly small
for e > 2.

Another measure of the magnitude of ice movements within a trough would be
the velocity at the base of the trough ((X,Z) = (37/2,—¢)), or the minimum
velocity at X = 37/2 for some Z, normalized by the velocity at the top of the riegel
((X,2Z) = (n/2,¢)), which is depicted in Fig. 6.13 and Fig. 6.14 respectively. In
all cases the result is effectively the same. For ¢ > 2 there is practically no ice
movement within the trough.

A value of € = 2 corresponds to r = 1/7 & 0.32 which can hardly be considered to
be a very high roughness value. For an overdeepening or a trough having this value
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Fig. 6.13: u(X = 3n/2,Z = —¢) normalized by u(X = 7/2,Z = ¢) for ¢ = 0.05. The curve
gives the velocity at the base of the trough as a fraction of the velocity at the peak of the sine
curve.

of roughness or larger the ice within it practically does not move. Perfect sliding
is an idealization, which will cause the maximum local basal velocity possible. Any
degree of friction will presumably pose a further hindrance to ice movements.

The minimum velocity at X = 37/2 normalized by u, is shown in Fig. 6.15. For
€ large enough to exclude extrusion flow the minimum is found at the bed (Z =
—¢), and Fig. 6.15 shows a similar behavior Figs. 6.12 and 6.14. But there is also
something quite unexpected to be seen; for ¢ > 1.8 u(X = 3n/2,Z = —¢)/us is
negative, i.e. the medium in the lowest part of the trough flows in the opposite
direction to the main flow. This is a clear indication of a flow separation.

An example of a flow separation is given in Fig. 6.17. It is an enlarged part of
Fig. 6.16, which shows the flow above and within an overdeepening for A = 50m, a =
20m, h = 200m, n = 1 and pgsina = 8.99577 x 10~ bar/m. Fig. 6.16 again only
shows a part of the hole configuration, which had the dimensions 200 x 200 m. The
velocities have the dimension m/a. Although the velocities within the overdeepening
are small compared to the velocity at the riegel, they are a significant fraction of
the sliding velocity, which for this particular case is 0.50 m/a. It can clearly be seen
how the main flow induces a secondary flow circulation in the clockwise direction. a
separation line is formed (shown as long dashes), separating the main flow from the
induced flow. The ice below the separation line will theoretically circulate there for

ever, never leaving the trough.

Flow separation is not, as sometimes thought, limited to high Reynolds numbers as
Figs. 6.17 and 6.16 clearly show. There is also a number of analytical and experi-
mental studies of creeping flow that show that flow separation is not limited to the
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Fig. 6.14: The minimum of the horizontal velocity v, at X = 37/2 for some z normalized by
the velocity at the peak of the sine curve, i.e. ming(u(X = 37/2,2))/u(X =n/2,Z =¢).
The minimum is not necessarily found at the base of the trough. The negative numbers
indicate that the minimum velocities are negative, i.e. the flow direction is opposite to the
flow direction at (X, Z) = (n/2,¢). This is an example of the recirculation of the ice within
the trough which takes place at high € values.

particular case of a perfectly lubricated sinusoidal bed (Hasimoto and Sano, 1980;
Sherman, 1990, p. 258 - 265). Corner flow, as an example, driven by circumnferential
motion with no-slip boundary conditions, is known to form so called Moffatt corner
eddies® if the corner is sharp enough (Moffatt, 1964). The corner angle must be less
than 73°. A review of the literature has, however, not revealed any other examples
of flow separation for perfectly-sliding-type boundary conditions. Separation is also
known to occur in creeping flow past sharp-cornered obstacles such as a vertical
fence of in a plane flow past a step (Taneda, 1956).

Tsangaris and Potamitis (1985) did numerical calculations on laminar small Reynolds-
number flow over a sinusoidal wall using no-slip boundary conditions. They found

flow separation at € = 0.6 for Re = 1, where the Reynolds number Re was defined

by Re = U)/(2n), where U was the horizontal velocity at large distance above the

wall.

The magnitude of the reversed flow can be several times as large as the sliding
velocity (cf. Fig. 6.15), but enlarging n decreases it. To test the influence of the
FE grid size on the onset of flow separation a local mesh refinement was done that
made the mesh unsymmetrical with respect to X = 3r/2. It was found that this did
locally increase the reverse flow. The possibility that extrusion flow occurs somewhat
earlier than Fig. 6.15 indicates and that its magnitude is somewhat greater cannot

SNamed after H. K. Moffatt, who theoretically proved their existence
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Fig. 6.15: The minimum of the horizontal velocity above the trough of the sine wave as a
function of € (¢ := ak), i.e. minz(u(37/2, Z)). The velocities were normalized by the average
sliding velocity u,. For ¢ — 0 there will be no velocity variations and the minimum of v, is
equal to u,. Therefore all the velocity curves start at 1.0 for £ = 0. With increasing roughness
the minimum of the horizontal velocity as a fraction of the sliding velocity becomes smaller. For
€ = 1.75 the minimum of flow velocities within the trough have become a negligible fraction
of the sliding velocity. As ¢ increases further negative values are found. This shows that the
minimum velocities have become negative. Since the roughness is then quite large the sliding
velocities are small and the ratio of the minimum velocities (maximum negative velocities) to
u, can thus be large.

be excluded. This is especially true for n > 1.

6.6.4 Frequency doubling

That larger frequencies become increasingly important can clearly be seen in Fig. 6.18
and 6.19 that show the first four harmonics of the basal velocity for n = 1 and n = 3.
The figures are double logarithmic and the Fourier coefficients have been normal-
ized by u,. The solid line gives the increase of the second harmonics according to

Eq. (4.8).

For n =1 (Fig. 6.18) and ¢ small, the first two harmonics are about equally impor-
tant. But as ¢ increases and the stresses concentrate about the peaks of the sine
curve the amplitude of the other two harmonics shown become comparable with
the first two ones. Within the framework of perturbation analysis each harmonic is
associated with one term of the power series. The rise of the i-th harmonic with ¢
is therefore proportional to the i-th power of £. This can be seen in Fig. 6.18 where
the slope of the curves is equal to the number of the harmonic.
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Fig. 6.16: Flow above and within an over-deepening. Parameters used: A = 50m, a = 20m,
h =200m, n =1 and pgsina = 8.99577 x 10~? bar/m. The velocities have the dimension
m/a. Only a part of the FE model is shown.

For n = 3 the higher harmonics turn out to be relatively more important with
respect to the first harmonic than for n = 1. Frequency doubling seems to play a
more important role for non-linear flow. This can be understood as a result of the
flow becoming more concentrated about the peaks for n > 1.
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Fig. 6.17: Flow separation. Same parameters used as in the previous figure. Only part of the
FE mesh is shown. The direction of the main flow is from left to right. The vectors indicate
the direction of the flow at each FE node. The ice within the trough rotates slowly in the
clockwise direction. The ice which takes part in this circular motion will theoretically never
leave the trough, and is thus separated from the main flow. This calculation was done for a
perfectly lubricated bed. No systematic study was made of the effect of the boundary condition
along the bed-line on the flow behavior. This particular calculation was, however, repeated for
no-slip boundary conditions, and again a flow separation of this type was found.
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Fig. 6.18: Harmonics of the basal velocity for n = 1 (¢ = 0.05). The Fourier coefficients
were normalized by the sliding velocity u,. The solid line gives the theoretically-derived curve
for the second harmonics. The curve is double logarithmic. Note how important the second
harmonics are. With increasing € all harmonics become equally important.
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Fig. 6.19: Harmonics for n = 3 (¢ = 0.05) normalized by u,. The solid line gives the
theoretically-derived curve for the second harmonics for n = 1. The curve is double logarithmic.
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CHAPTER 7

Conclusions

With the use of both analytical and numerical methods the flow characteristics as
well as the sliding velocity of a highly viscous medium flowing under the influence
of gravity over a perfectly lubricated sinusoidal bed have been analysed. In this
chapter a summary of results, and recommendations for further research will be
given. Examples of field observations of extrusion flow that can be understood in
the light of these new findings and predictions about flow patterns of glacier in the
Alps that could not have been done before this investigation was made, will be given.

7.1 Flow characteristics

The horizontal velocity field of a highly viscous medium flowing over a frictionless
sinusoidal bed can have a point of local velocity maximum /2 above the peak
of the sine curve, and a point of local velocity minimum above the trough of the
sine curve. Whether these stationary points will exist or not depends mainly on the
roughness of the bed (r := a/A or € := ak), and the non-linearity of the medium,
but also to some extent on the wavelength to thickness ratio.

7.1.1 The local velocity maximum, /2

The velocity maximum is found for € < eqiticat(m/2, 8)- Ecritical 15 @ function of n and
is listed in Table 7.1 forn = 1 to n = 5 for § « 1. The value of £;ical increases
with increasing n showing that the non-linearity of the flow law makes the range of

¢ values for which U75" exists larger.

/2 18 situated directly above the peak of the sine curve. For ¢ = 0 its vertical
position is given by Z = 1. With increasing ¢, U] /2 moves upwards with respect to
the mean bed-line. For n = 1 and € = €qitical; Usla' 2 is at Z ~ 1.98. Increasing the
value of n moves Urly 2 towards the bed.

There is a point of the horizontal velocity field situated directly above UZ)5* were v,
has a local maximum in the horizontal direction but a local minimum in the vertical
direction. This saddle point Ug3"" moves downwards from Z = oo towards the
maximum point U? "‘ X with mcrea,smg e. For € = e.ritical the vertical position of the
saddle point and that of the maximum point become coincident. For € 2 Ecritical,

e and U S“dd"" do not exist.
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n ecritical(ﬂ-/2a 0)
1 0.13788

2 0.19

3 0.22
4

)

0.24
0.25

Table 7.1 eqiticat(7/2,0) as a function of n for § < 1. The value of e.yical for n = 1 is
based on the Morland solution. The values for n > 1 are based on numerical calculations. The
velocity maximum above the peak of the sine curve (kx = 7/2) exists for € < €.yicai- The
errors in the determination of £.,it;icat are estimated to be less than 7%.

Between U;*;gd‘e and U7j5* the horizontal velocity increases with depth. This is an
example of extrusion flow. Extrusion flow would cause an inversion of the inclina-
tion of bore holes. It is interesting that this type of inclination inversion has been
observed in nature. Inclinometry measurements in a bore hole slightly down-glacier
from the crest of a riegel on Storglacidren, Sweden, showed an increase in horizontal
velocity with depth (Hooke et al., 1987). This was only observed during summer
when water pressures were high. There are indications that the ice became at least
partly decoupled from the bed during this period. The assumption of frictionless
flow over the bedrock may thus be valid. A map of the bed topography obtained
by radio-echo measurements (Bjornsson, 1981) shows that there are two regions of
overdeepening up-glacier and down-glacier from the riegel. The bed can thus be
approximated by a sine curve. The wavelength is about 1000 m and the amplitude
approximately 20 m which gives € = 0.12. This ¢ value is less than eigical(7/2,0)
from Table 7.1 for all values of n. The assumption of 4 < 1 is however not valid and
one can therefore not expect a perfect numerical agreement. The measured vertical
position of the region of increase in horizontal velocity with depth is, for example,
closer to the bed than would be expected on the basis of the numerical calculations
done for § <« 1. Still, it can be concluded that the vertical extension and compres-
sion of the ice caused by the sinusoidal form of the bed is a likely explanation of the
observed flow pattern.

7.1.2 The local velocity minimum, 5‘;};‘2

The minimum point U;;,i;; is situated above the trough of the sine curve (kz = 37/2),
and is found for € < eqisical(37/2, 6). The calculated values of €itical for § < 1 are
given in Table 7.2.

The non-linearity of the flow law increases the range of ¢ values for which 3[171:/“2 is
found, as Table 7.2 shows. The velocity decrease with respect to the velocity at the

bed also gets more pronounced with increasing n (cf. Fig. 6.10).

For e = 0, U;‘ri;‘z is situated at Z = 1. With increasing ¢ U;‘ri/“z moves downwards,
reaches the bed and disappears for € = eitical(37/2,6). Increasing n has the effect

min

of moving U /> slightly further away from the bed.
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N Eecritical (31r/2, 0)
1 1.20

2 1.37

3 1.45
4

5

1.50
1.55

Table 7.2: ecriticat(37/2,0) as a function of n for § < 1. All values based on numerical
calculations. The velocity minimum above the trough of the sine curve (kz = 37/2) exists for
€ < Ecritical- 1 he errors in the determination of ¢.ica are estimated to be less than 7%.

Below Upn'% the horizontal velocities increase with depth. If the explanation for the
occurrence of extrusion flow at Storglacidren is correct, one must expect two further
such regions above and below the riegel. This would be an interesting test of the
appropriateness of this explanation.

7.1.3 Flow separation

Flow separation occurs for ¢ > 1.8 for all values of n. It can happen for a perfectly
lubricated bed as well as for no-slip boundary conditions. Based on the large number
of analytical, experimental and computational demonstrations of its existence, flow
separation for no-slip boundary conditions is known to be an universal feature of
laminar flow in corners (Sherman, 1990, p. 265) as well as around sharp corners. It
is now clear that flow separation must also be expected at roughness values larger
than = 0.28 for smooth perfectly lubricated beds.

A value of 1.8 for the slope parameter ¢ corresponds to a roughness r of 0.28. This is
a high roughness value but there is an example of an overdeepening in the Alps that
has an even larger roughness value. This is the spectacular overdeepening found at
Konkordiaplatz, Aletschglacier, Switzerland, which is about 1000 m long and 400
m deep. Although the flow situation there is strongly three-dimensional it must be
expected that the ice within this overdeepening hardly takes part in the overall flow
of the glacier, if at all. The overlying ice most probably moves directly over the
trough. Again this is a prediction that could be put to the test.

7.1.4 Stresses

The maximum of the effective stresses along the bed-line is found for ¢ — 0 at the
inflection points of the sinusoidal curve. With increasing ¢ these maximum points
move towards the peaks of the sine curve, and become stronger and more localized.
A first order perturbation theory gives a distribution of the effective stresses that is
independent of z. For a second order theory this is no longer true.
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7.2 Sliding velocity

The sliding velocity as a function of n, €, and 6 has been calculated. Eq. (3.23) is
correct. For finite values of € the sliding velocity can be determined by the use of
the Taylor coefficients listed in Table 6.1.

A very interesting result is the fact that Inu, depends linearly on n for all values of
e and 4.!

Furthermore the numerical calculations indicate that s depends linearly on §. As n
and ¢ get larger the linear slope of the s(6) curve increases approximately according
to Eq. (6.14). The sliding velocity is thus dependent on the glacier thickness and
measurements of changes in sliding velocities with time for glaciers lying on hard
beds could thus be caused by thickness changes.

It is, however, difficult to see how these theoretical results could be tested or even
used directly to estimate sliding velocities of glaciers. The model is in this respect
definitely too idealized. On the other hand it is difficult to see how progress towards
a theoretically-derived sliding law can be made without knowing the sliding velocity
for this idealized model. Further work along similar lines is needed.

ITo calculate s as a function of n for a different value of n than that listed, one should use
Table 6.1 to calculated the sliding function for several n values and then interpolate or extrapolate
the results assuming In s = @ + bn for some a and b.
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APPENDIX A

Second-order Solutions for Perfect
Sliding With Regelation

The following equations give the velocity components, the strain rates, and the
pressure distribution of a highly viscous medium sliding over a sinusoidal bed in the
presence of regelation. They were derived directly from Morland (1976a). Morland
was mainly interested in the velocity and pressure distribution along the bed, and
therefore only gave the corresponding expressions for z = 0.

The z axis is parallel to the mean slope of the bed making an angle o with respect
to the horizontal. The coordinates of the bed as a function of x are denoted by
zo(z). The bed is defined by 2y = asin k.

Regelation is only important at wavelengths comparable to or smaller than the
transition wavelength X,, where

\ - [ ] "
L

Using the numerical values for the physical parameters from Table A.2 one finds

that the transition wavelength is of the order of 0.5m. For a non-linear medium

with n > 1 the transition wavelength becomes smaller (Kamb, 1970; Fowler, 1979;

Fowler, 1981). Table A.1 compares the notation that is used here with the notation

of several other authors.

There are two parameters that describe the relative importance of regelation to
viscous flow. One of them is denoted by @ and is the ratio of the bed wavelength

this thesis Nye (1969.1970) Kamb (1970) Lliboutry (1987b) Morland (1976a)

k, k., ly w, 1//}
A 2r/k, Ao 2rfw, 27,
L L H pL L
k k h w k

r V2r ¢ e/2n

Table A.1: Notation used in this thesis and that used by several different authors.
k, is the controlling wavenumber, and A, the transition wavelength, A, = 2n/k,, with k, =

‘/WL'—T')' r = a/\ is the single wavelength roughness, and ¢ = ak = 27 is the (local
nCo (Mg \ o ) .
bed) slope number. L is the latent heat of fusion per unit volume of ice.
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Co 08x1077°Cm?N-!
Q 4x1072)Jm2s!
L 2.8 x 108 Jm™3

N 3 x10"2Nm?2s
K, 2.0Jmts"t°C!

KB ~ Kl

Table A.2: Numerical values of physical parameters, based on Paterson (1981) and Hutter
(1983). C, is the Clausius-Clapeyron constant, Q the geothermal heat flux, L the latent heat
of fusion per unit volume of ice, 7, is the (linear) viscosity of ice, and K; and K are the
thermal conductivities of the ice and bed respectively.

to the transition wavelength, i.e.

@ = (M) = (k.Jk)? (A.2)
L
N 2k27Co (K1 + Kp)' (A3)

k. is the controlling wavenumber, given by

k2 = L .
* 2nCO(KI+KB)

(A.4)

Since the ratio w?/(w? + 1) will turn up in most of the following equations it will

be abbreviated by g, or
2

(A.5)

hi=garr
This also agrees with Nye’s notation. In the no-regelation limit 3; = 1, and in the
pure-regelation limit f; = 0. Inw is a convenient measure of the importance of
regelation.

The second parameter is Morland’s A parameter, which will here be denoted by A,,.

4. - i+ Kp)eos(a)pgCo+2Q (A.6)
Lub
a’k*n (Co (K; + Kp) cot(a) 2_‘2) , (A7)
L h U

The effect of freezing and melting on the flow field is negligible if A,, < 1, which is
almost always the case (Morland, 1976a).

The basal sliding velocity u, is

Th (11_12 + 1)
Up = @T (AS)
Th 1 1 k
LA A9
ne? (k + k. L) (A.9)
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In the no-regelation limit k/k, < 1 and

Tb
Uy = n_k6—2 (AIO)
In the pure-regelation limit &/k, > 1 and
Tbk
up = ne2k? (A.11)

up has a minimum at k = k, and the largest part of the drag is contributed by
the Fourier components of the bed with wavelengths (having the same amplitude to
wavelength ratio) around A, (Nye, 1969).
Note that

up fy = —2— (A.12)

b M1 'I"E2k’ ‘

which is a useful relation that can be used to eliminate the sliding velocity from the
following equations.

The horizontal velocity field is given by

_ Tbh
ve(z,2) = up+ o (1-( - z/h)?) (A.13)

+ up By kze™** (sin(kz) — A cos(kz)) €
+ upBre72** (cos(2kz) + Am sin(2kz)) (1/4 — kz/2) €
+ O(eY).

Note also that for z = 0 the first order term vanishes.

The vertical velocity field is given by

v,(T,2) = upBre " (cos(kz) + A sin(kz)) (1 + kz) € (A.14)
+ %ub By kze 2** (sin(2 kz) — A,, cos(2kz))e?
+ O(ed).

The corresponding strain rates are given by

e = Uy zke ™ (cos(kx) + A, sin(kz)) € (A.15)
+ Oy ke 2% (sin(2kz) — Am cos(2kz)) (kz —1/2) £*
+ O(e).

€r: = % (1 — z/h) a®k3u, (A.16)
+ up B zk%e7* (A cos(kx) —sin(kr)) €
+ B ke 2% (kz — 1/2) (cos(2kx) + Am sin(2 kz)) g?
+ O(Y).
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The second invariant of the strain-rate tensor is given by

1
& = F(1-z/h) 'k (A17)

u? By (1 - z/h) (Am cos(kz) — sin(kz)) zk*a’e™** ¢
uj B (Afn ) 1) 22k%e2k2 2

w2 By (1 — z/h) (kz — 1/2) (A sin(2 kz) + cos(2 kz)) a®k*e 2k 2
uj B (A + 1) (2kz — 1) sin(kz) zk3e 3% &3

uf ﬁl (kz — 1/2 (Afn + 1) f2e—tkz o4

O(e%).

+ + 4+ + + 4+

The pressure is given by

Pa + pg cos(a) (1 —z/h) (A.18)
2uy By nke™** (cos(kx) + A, sin(kz)) e

uy By nke™2** (sin(2kz) — A, cos(2kz)) e

O(e?).

p(z,2)

+ + +

These expressions can be used to calculate the flow and the sliding velocity for a
general bed geometry. Different Fourier components can simply be added linearly
together. Calculating the regelation velocity and the viscous flow velocity separately
for a general bed geometry and afterwards adding the two components together
would on the other hand give an incorrect result. The reason for this is, as Nye (1969)
explains, that the pressure distribution that results from the process of regelation
is in general different from the one that is caused by viscous flow over a bump, so
that the two flows will interfere.
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